
Aurora Vision Library Aurora Vision Library 55.6.6

Aurora Vision Library DocumentationAurora Vision Library Documentation

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

1. Introduction

2. Getting Started

3. Technical Issues

4. Working with GigE Vision® Devices

5. Machine Vision Guide

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/DilateRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/ErodeRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/CloseRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/OpenRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionArea.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionCircularity.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionConvexity.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionRectangularity.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionElongation.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionMoment.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionNumberOfHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionOrientation.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionPerimeterLength.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionBoundingBox.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionBoundingCircle.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionBoundingRectangle.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionContours.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionDiameter.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionMedialAxis.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleStripe.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleStripes.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNStripes.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleRidge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleRidges.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_NCC.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/RecognizeCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deploy_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://www.adaptive-vision.com

1. Introduction1. Introduction

Table of content:

Overview

Programming Conventions

Aurora Template Library

OverviewOverview

IntroductionIntroduction

Aurora Vision LibraryAurora Vision Library is a machine vision library for C++ and .NET programmers. It provides a
comprehensive set of functions for creating industrial image analysis applications 3 from standard-based
image acquisition interfaces, through low-level image processing routines, to ready-made tools such as
template matching, measurements or barcode readers. The main strengths of the product include the highest
performance, modern design and simple structure making it easy to integrate with the rest of your code.

The scope of the library encompasses:

Relation between Aurora Vision Library and Aurora Vision StudioRelation between Aurora Vision Library and Aurora Vision Studio

Each function of the Aurora Vision Library is the basis for the corresponding filter available in AuroraAurora
Vision StudioVision Studio. Therefore, it is possible (and advisable) to use the Aurora Vision Studio as a convenient,
drag & drop prototyping tool, even if one intends to develop the final solution in C++ using Aurora Vision
Library. Moreover, for extended information about how to use advanced image analysis techniques, one can
refer to Machine Vision Guide from the documentation of Aurora Vision StudioAurora Vision Studio.

In the table below we compare the ThresholdImage function with the ThresholdImage filter:

Key FeaturesKey Features

PerformancePerformance

In Aurora Vision Library careful design of algorithms goes hand in hand with extensive hardware
optimizations, resulting in performance that puts the library among the fastest in the world. Our
implementations make use of SSE instructionsSSE instructions and parallel computationsparallel computations on multicore processors.

Modern DesignModern Design

All types of data feature automatic memory managementautomatic memory management, errors are handled explicitly with exceptionsexceptions
and optional typesoptional types are used for type-safe special values. All functions are thread-safethread-safe and use datadata
parallelismparallelism internally, when possible.

ConsistencyConsistency

The library is a simple collection of types and functions, provided as a single DLL file with appropriate
headers. For maximum readability function follow consistent naming convention (e.g. the VERB + NOUN form
as in: ErodeImage, RotateVector). All results are returned via reference output parameters, so that many
outputs are always possible.

Example ProgramExample Program

A simple program based on the Aurora Vision Library may look as follows:

Image ProcessingImage Processing
High performance, any-shape ROI operations for
unary and binary image arithmetics,
refinement, morphology, smoothing, spatial
transforms, gradients, thresholding and color
analysis.

Region AnalysisRegion Analysis
Robust processing of pixel sets that
correspond to foreground objects: extraction,
set arithmetics, refinement, morphology,
skeletonization, spatial transformations,
feature extraction and measurements.

Path AnalysisPath Analysis
Subpixel-precise alternative to region
analysis, particularly suitable for shape
analysis. Provides methods for contour
extraction, refinement, segmentation,
smoothing, classification, global
transformations, feature extraction and more.

ProfilesProfiles
Auxiliary toolset for analysis of one-
dimensional sequences of values, e.g. image
sections or path-related distances.

HistogramsHistograms
Auxiliary toolset for value distribution
analysis.

Geometry 2DGeometry 2D
Exhaustive toolset of geometric operations
compatible with other parts of the library.
Provides operations for measuring distances
and angles, determining intersections,
tangents and feature.

1D Edge Detection1D Edge Detection
Detection of edges, ridges and stripes (paired
edges) by the means of 1D edge scanning, i.e.
by extracting and analysing a profile along a
specified path.

2D Edge Detection2D Edge Detection
Detection of edges by the means of 2D edge
tracing, i.e. by extracting and refining
locally maximal image gradients.

Fourier AnalysisFourier Analysis
Suitable both for educational experimentation
and industrial application, this toolset
provides methods for Fourier transform and
image processing in the frequency domain.

Template MatchingTemplate Matching
Efficient, robust and easy to use methods for
localizing objects using a gray-based or an
edge-based model.

BarcodesBarcodes
Detection and recognition of many types of 1D
codes.

DatacodesDatacodes
Detection and recognition of QR codes and
DataMatrix codes.

Hough TransformHough Transform
Detection of analytical shapes using the Hough
transform.

Image SegmentationImage Segmentation
Automated extraction of object regions using
gray or edge information.

Multilayer PerceptronMultilayer Perceptron
Artificial neural networks.

Optical Character RecognitionOptical Character Recognition
Text recognition or validation, including dot
print.

Shape FittingShape Fitting
Subpixel-precise detection of analytical
shapes, whose rough locations are known.

Aurora Vision LibraryAurora Vision Library: Aurora Vision StudioAurora Vision Studio:

void ThresholdImage

(

 const Image& inImage,

 Optional<const Region&> inRoi,

 Optional<real> inMinValue,

 Optional<real> inMaxValue,

 real inFuzziness,

 Image& outMonoImage

);

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/RotateVector.html

#include <AVL.h>

using namespace atl;

using namespace avl;

int main()

{

 try

 {

 InitLibrary();

 Image input, output;

 LoadImage("input.bmp", false, input);

 ThresholdImage(input, NIL, 128, NIL, 0, output);

 SaveImage(output, NIL, "output.bmp", false);

 return 0;

 }

 catch (const atl::Error&)

 {

 return -1;

 }

}

Please note that Aurora Vision Library is distributed with a set of example programs, which are available
after installation.

Programming ConventionsProgramming Conventions

Organization of the LibraryOrganization of the Library

Aurora Vision Library is a collection of C++ functions that process machine vision related types of data.
Each function corresponds to a single data processing operation, e.g. DetectEdges_AsPaths performs a
Canny-like 2D edge detection. As a data processing library, it is not particularly object-oriented. It
does use, however, modern approach to C++ programming with automatic memory management, exception
handling, thread safety and the use of templates where appropriate.

NamespacesNamespaces

There are two namespaces used:

atlatl 3 the namespace of types and functions related to Aurora Template Library.

avlavl 3 the namespace of types and functions related to Aurora Vision Library as the whole.

avsavs 3 Aurora Vision Studio Code Generator equivalents of Aurora Vision Library functions. Not
recommended to use.

Enumeration TypesEnumeration Types

All enumeration types in Aurora Vision Library use C++0x-like namespaces, for example:

namespace EdgeFilter

{

 enum Type

 {

 Canny,

 Deriche,

 Lanser

 };

}

This has two advantages: (1) some identifiers can be shared between different enumeration types; (2) after
typing "EdgeFilter::" IntelliSense will display all possible elements of the given enumeration type.

Example:

atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,

 2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Function ParametersFunction Parameters

Contrary to standard C++ libraries, machine vision algorithms tend to have many parameters and often
compute not single, but many output values. Moreover, diagnostic information is highly important for
effective work of a machine vision software engineer. For these reasons, function parameters in Aurora
Vision Library are organized as follows:

1. First come input parametersinput parameters, which have "in" prefix.

2. Second come output parametersoutput parameters, which have "out" prefix and denote the results.

3. The last come diagnostic output parametersdiagnostic output parameters, which have "diag" prefix and contain information that
is useful for optimizing parameters (not computed when the diagnostic mode is turned off).

For example, the following function invocation has a number of input parameters, a single output parameter
(edges) and a single diagnostic output parameter (gradientImage).

atl::Array<avl::Path> edges;

avl::Image image, gradientImage;

avl::DetectEdges_AsPaths(image, atl::NIL, avl::EdgeFilter::Canny,

 2.0f, atl::NIL, 60.0f, 30.0f, atl::NIL, 30.0f, 0.0f, atl::NIL, 0.0f, edges, gradientImage);

Diagnostic Output ParametersDiagnostic Output Parameters

Due to efficiency reasons the diagnostic outputs are only computed when the diagnostic mode is turned on.
This can be done by calling:

https://docs.adaptive-vision.com/5.6/avl/functions/2DEdgeDetection/DetectEdges_AsPaths.html
https://docs.adaptive-vision.com/5.6/avl/introduction/ATL.html

avl::EnableAvlDiagnosticOutputs(true);

In your code you can check if the diagnostic mode is turned on by calling:

if (avl::GetAvlDiagnosticOutputsEnabled())

{

 //...

}

Optional OutputsOptional Outputs

Due to efficiency reasons computation of some outputs can be skipped. In function TestImage user can
inform function that computation of outMonoImageoutMonoImage is not necessary and function can omit computation of
this data.

the TestImage Header with last two optional parameters:

void avl::TestImage

(

 avl::TestImageId::Type inImageId,

 atl::Optional<avl::Image&> outRgbImage = atl::NIL,

 atl::Optional<avl::Image&> outMonoImage = atl::NIL

)

Example of using optional outputs:

avl::Image rgb, mono;

// Both outputs are computed

avl::TestImage(avl::TestImageId::Baboon, rgb, mono);

// Only RGB image is computed

avl::TestImage(avl::TestImageId::Baboon, rgb);

// Only mono image is computed

avl::TestImage(avl::TestImageId::Baboon, atl::NIL, mono);

In-Place Data ProcessingIn-Place Data Processing

Some functions can process data in-place, i.e. modifying the input objects instead of computing new ones.
There are two approaches used for such functions:

1. Some filters, e.g. the image drawing routines, use "io" parameters, which work simultaneously as
inputs and outputs. For example, the following function invocation draws red circles on the image1
object:

avl::DrawCircle(image1, circle, atl::NIL, avl::Pixel(255, 0, 0), style);

2. Some filters, e.g. image point transforms, can be given the same object on the input and on the
output. For example, the following function invocation negates pixel values without allocating any
additional memory:

avl::NegateImage(image1, atl::NIL, image1);

Please note, that simple functions like NegateImage can be executed even 3 times faster in-place than when
computing a new output object.

Work CancellationWork Cancellation

Most of long-working functions can be cancelled using CancelCurrentWork function. Cancellation technique
is thread-safe, so function CancelCurrentWork can be called from different thread. If avl function was
cancelled then atl::CancellationError is thrown.

To check cancellation status use the IsCurrentWorkCancelled or ThrowIfCurrentWorkCancelled functions.

void ProcessingThread()

{

 while (!avl::IsCurrentWorkCancelled())

 {

 std::cout << "Iteration start" << std::endl;

 avl::Delay(10000); // Function with cancellation support

 std::cout << "Iteration complete" << std::endl;

 }

 std::cout << "Processing thread stop" << std::endl;

}

int main()

{

 avl::InitLibrary();

 std::thread t {ProcessingThread};

 std::cout << "Press Enter to stop execution." << std::endl;

 std::cin.get();

 // Cancel work in ProcessingThread and in avl::Delay

 avl::CancelCurrentWork();

 t.join();

 return 0;

}

Library InitializationLibrary Initialization

For reasons related to efficiency and thread-safety, before any other function of the AVL library is
called, the InitLibrary function should be called first:

https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageDrawing/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePointTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePointTransforms/NegateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/CancelCurrentWork.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/IsCurrentWorkCancelled.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/ThrowIfCurrentWorkCancelled.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InitLibrary.html

int main()

{

 avl::InitLibrary();

 //...

}

Debug PreviewDebug Preview

For diagnostic purposes it is useful to be able to preview Images and image based data primitives. You can
achieve this by using functions from the Debug Preview category. They can be helpful in debugging programs
and displaying both intermediate and final data.

avl::Image image;

avl::LoadImage("hello.png", false, image);

// Prepare the preview window

auto view = avl::DebugPreview::CreateView("My Preview Window");

// Show loaded image in new window.

avl::DebugPreview::SetViewImage(view, image);

// Wait until window is closed.

avl::DebugPreview::WaitForViewClose(view);

Aurora Template LibraryAurora Template Library

Aurora Vision Library is based on the Aurora Template Library 3 a simplified counterpart of the C++
Standard Template Library, which avoids advanced templating techniques mainly by using raw pointers
instead of abstract iterators. This makes Aurora Vision Library portable to embedded platforms, including
the ones that do not support C++ templates fully.

Please note, that the following types should only be parametrized with fundamental types (int, float,
etc.) or types from avl or atl namespace. Const and/or reference types are also allowed, as long as
template type accepts such type (e.g. Array<T> cannot be parametrized with reference type).

Array<T>Array<T>

The Array<T> type strictly corresponds to std::vector<T>. It is a random-access, sequential container with
automatic memory reallocation when growing.

Here is a simplified version of the public interface is depicted: Array.h

Optional<T>Optional<T>

The Optional<T> type provides a consistent way of representing an optional value, something for which NULL
pointers or special values (such as -1) are often used. Many APIs provide optional values using default
values of parameters. This type is inspired by boost::optional<T> class from the Boost Library, but is
designed mostly for input parameters, not only for function results.

In Aurora Vision Library it is used to represent optional regions of interest in image processing
operations and many other input parameters that can be determined automatically when not provided by an
user.

Documentation for this type is presented in Optional.h.

Sample use:

atl::Optional<avl::Point2D> p;

p = avl::Point2D(10, 25); // normal value

p = atl::NIL; // NIL value

if (p != atl::NIL)

{

 avl::Point2D q = p.Get(); // access to a non-nil value

 p.Get().x = 15; // direct access to a field

}

Conditional<T>Conditional<T>

This type of data is especially used to determine invalid results. Many functions in C return special
value as -1 or NULL when their result is invalid. Type Conditional<T> is very similar to Optional<T>, but
it is mostly used in outputs.

Documentation for this type is presented in Conditional.h.

Sample use:

atl::Conditional<int> result;

avl::ParseInteger("Test1", avl::NumberSystemBase::Base_10, result); // Parsing textual data

if (result != atl::NIL) // If textual data is not valid integer result has value atl::NIL

 printf("Valid integer.");

else

 printf("Invalid integer. Value: %d", result.Get());

Dummy<T>Dummy<T>

Dummy<T> class is used to create a temporary object that will be released after its use. It is mostly used
to create a temporary object to pass its reference to a function. Such temporary objects are helpful when
not all values returned by a function are important and we don't plan to use them.

Sample use:

https://docs.adaptive-vision.com/5.6/avl/functions/DebugPreview/index.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/TypeReference.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Array.html
https://www.boost.org/doc/libs/1_47_0/libs/optional/doc/html/index.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Optional.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Conditional.html

avl::Region region;

avl::Circle2D circle = avl::Circle2D(50.0f, 50.0f, 50.0f);

avl::CreateCircleRegion(circle, atl::NIL, 100, 100, region);

// Second parameter is not used.

avl::Segment2D minorAxis;

avl::RegionEllipticAxes(region, atl::Dummy<avl::Segment2D>(), minorAxis);

std::cout << "Minor axis length: " << minorAxis.Length();

2. Getting Started2. Getting Started

Table of content:

SDK Installation

Project Configuration

Using Library with CMake

Using User Filters on Linux

This is just a placeholder to silence warnings about broken link.

SDK InstallationSDK Installation

RequirementsRequirements

Aurora Vision Library is designed to be a part of applications working under control of the Microsoft
Windows operating system. Supported versions are: 10 and 11, as well as the corresponding embedded
editions.

To build an application using Aurora Vision Library, Microsoft Visual Studio environment is required.
Supported versions are: 2015, 2017 and 2019.

Aurora Vision Library can be also used on Linux operating system with GCC compiler - for details consult
Using SDK on Linux article.

Running the InstallerRunning the Installer

The installation process is required to copy the files to the proper folders and to set the environment
variables used for building applications using Aurora Vision Library.

After the installation, a license for Aurora Vision Library product has to be loaded. It can be done with
the License Manager tool available in the Start Menu.

To verify that the installation has been successful and the license works correctly, one can try to load,
build and run example programs, which are available from the Start Menu.

SDK DirectoriesSDK Directories

Aurora Vision Library is distributed as a set of header files (.h), dynamic (.dll) and static (.lib)
libraries. The libraries (static and dynamic) are provided in versions for 32-bit and 64-bit system. The
header files are common for both versions.

The picture below shows the structure of the directories containing headers and libraries included in
Aurora Vision Library.

Library ArchitectureLibrary Architecture

Aurora Vision Library is split into four parts:

1. Aurora Vision Library - contains all functions for working with images.

2. Standard Library - contains all auxiliary functions like: file operations, XML editing or mathematical
operations.

3. GenICam Library - contains all GenICam and GigEVision functions.

4. Third Party Library - contains functions of third-party hardware producers.

The usage of the library is possible only when including one of the following header files:

AVL.h

STD.h

Genicam.h

ThirdPartySdk.h

Environment and PathsEnvironment and Paths

Aurora Vision Library uses the environment variable named AVL_PATH5_6 (5_6 stands for the 5.6 version) in
the building process. The variable points the directory with the headers and libraries needed in the
compile time (.h files and AVL.lib) and in the run time (AVL.dll). Its value is typically set to
C:\Program Files (x86)\Aurora Vision\Aurora Vision Library 5.6, but it can differ in other systems.

The directories (installed in the Program Files system folder) being a
part of Aurora Vision Library are shortly described below.

atl_visualizersatl_visualizers 3 a directory containing the visualizers for
Microsoft Visual Studio Debugger of Aurora Vision Library data types.

binbin 3 a directory containing dynamic linked library files (AVL.dll)
for 32|64-bit applications. The libraries are common for all
supported versions of Microsoft Visual Studio and for Debug|Release
configurations. All the functions of Aurora Vision Library are
included in the AVL.dll file.

DocumentationDocumentation 3 a directory containing the documentation of Aurora
Vision Library, including this document.

includeinclude 3 a directory containing all header (.h) files for Aurora
Vision Library. Every source code file that uses Aurora Vision
Library needs the AVL.h header file (the main header file) to be
included.

liblib 3 a directory containing static (.lib) libraries (AVL.lib) for
32|64-bit applications. The AVL.lib file has to be statically-linked
into the program that uses Aurora Vision Library. It acts as an
intermediary between the usage of Aurora Vision Library functions and
the AVL.dll file. The programmer creating an application does not
need to bother about DLL entry points and functions exported from the
AVL.dll file. Aurora Vision Library is designed to be easy to use, so
one only needs to link the AVL.lib file and can use all the functions
from the AVL.dll just as easy as local functions.

toolstools 3 a directory containing the License Manager tool helping the
user to load the license for Aurora Vision Library to the developer's
computer.

ExamplesExamples 3 a directory located in the Public Documents system folder
(e.g. C:\Users\Public\Documents\Aurora Vision Library 5.6\Examples on
Windows Vista/7) containing simple example solutions using Aurora
Vision Library. The examples are a good way of learning, how to use
Aurora Vision Library. They can be used as a base for more
complicated programs as well. The shortcut to the Examples directory
can be found in the Start Menu after the installation of Aurora
Vision Library.

https://docs.adaptive-vision.com/5.6/avl/getting_started/LibraryOnLinux.html

The projects using Aurora Vision Library should use the value of AVL_PATH5_6 to resolve the locations of
the header files and statically-linked AVL.lib file. Using an environment variable containing path makes
the application source code more portable between computers. The AVL_PATH5_6 path is typically used in the
project settings of the compiler (Configuration Properties | C/C++ | General | Additional Include
Directories) to find the header files, settings of the linker (Configuration Properties | Linker | General
| Additional Library Directories) to find the proper version of the AVL.lib and in the configuration of
Post-Build Event (Configuration Properties | Build Events | Post-Build Event | Command Line) to copy the
proper version of the AVL.dll file to the output directory of the project. All the settings can be viewed
in the simple example applications distributed with Aurora Vision Library.

Project ConfigurationProject Configuration

General InformationGeneral Information

Aurora Vision Library is designed to be used as a part of C++ projects developed with Microsoft Visual
Studio in versions 2015-2019.

Creating a New ProjectCreating a New Project

Microsoft Visual Studio 2015, 2017 and 2019Microsoft Visual Studio 2015, 2017 and 2019

Aurora Vision Library is provided with a project template. To create a new project using Aurora Vision
Library, start Microsoft Visual Studio and choose the File | New | Project... command. The template called
AVL 5.6 Project is available in the tab Installed | Templates | Other Languages | Visual C++.

Required Project SettingsRequired Project Settings

All projects that use Aurora Vision Library need some specific values of the compiler and linker settings.
If you want to use the Library in your existing project or you are manually configuring a new project,
please apply the settings listed below:

Configuration Properties | GeneralConfiguration Properties | General

Character SetCharacter Set should be set to Use Unicode Character Set.

Configuration Properties | C/C++Configuration Properties | C/C++

GeneralGeneral

Additional Include DirectoriesAdditional Include Directories should contain the $(AVL_PATH5_6)\include\ path.

Configuration Properties | LinkerConfiguration Properties | Linker

GeneralGeneral

Additional Library DirectoriesAdditional Library Directories should contain the proper path to directory containing the
AVL.lib file. The proper path is $(AVL_PATH5_6)\lib\$(PlatformName)\ .

InputInput

Additional DependenciesAdditional Dependencies should contain AVL.lib file.

Configuration Properties | Build EventsConfiguration Properties | Build Events

Post-Build EventPost-Build Event

Command LineCommand Line should contain copy "$(AVL_PATH5_6)\bin\$(PlatformName)\AVL.dll" "$(OutDir)"
call. This setting is not mandatory, but the application using Aurora Vision Library requires
an access to the AVL.dll file and this is the easiest way to fulfill this requirement.

Including HeadersIncluding Headers

Every source code file that uses Aurora Vision Library needs the #include <AVL.h> directive. A proper path
to the AVL.h file is set in the settings of the compiler (described above), so there is no need to use the
full path in the directive.

Distributing Aurora Vision Library with Your ApplicationDistributing Aurora Vision Library with Your Application

Once the application is ready, it is time for preparing a distribution package or an installer. There are
two requirements that needs to be fulfilled:

The final executable file of the application needs to have access to the proper version (used by Win32
or x64 configuration) of the AVL.dll file. Typically, the AVL.dll file should be placed in the same
directory as the executable.

The computer that the application will run on needs a valid license for the use of Aurora Vision
Library product. Licenses can be managed with the License Manager application, that is installed with
Aurora Vision Library Runtime package.

A license file (*.avkey) can be also manually copied to the end user's machine without installing
Aurora Vision Library Runtime. It must be placed in a subdirectory of the AppData system folder. The
typical location for the license file is C:\Users\%USERNAME%\AppData\Local\Aurora Vision\Licenses.
Remember that the license is valid per machine, so every computer that runs the application needs a
separate license file.

Alternatively to the (*.avkey) files we support USB Dongle licenses.

Using Library with CMakeUsing Library with CMake

Library ships with CMake configuration modules. It makes the project portable, and easy to compile for
Windows, linux or Android. The minimum CMake version supported is 3.10 (for example shipped with Ubuntu
bionic/18.04)

Quick StartQuick Start

A simple template for CMakeLists.txt is presented below:

cmake_minimum_required(VERSION 3.10)

project(example)

find_package(

 AVL

 # for a specific version, uncomment the line below

 #5.3

 CONFIG

 REQUIRED

)

copy binaries to build directory

copy_avl()

add_executable(

 # executable name

 example_exec

 # source files

 main.cpp

)

target_link_libraries(

 example_exec

 PUBLIC

 AVL

)

install user executable

install(TARGETS example_exec)

install ALL AVL libraries

install_avl()

One can also copy one of the CMake examples, and modify to your needs. For further cmake use refer to
online documentation. Be aware that ubuntu 18.04 is the baseline distribution, so minimal CMake version is
3.10

ReferenceReference

packagepackage

CMake package is provided for windows installer and linux archive. Both should be usable after
installation. Linux additionally ships with Android libraries. The library is only discoverable using
CONFIG mode, so it's sensible to restrict find_package to that mode.

find_package(

 AVL

 # for a specific version, uncomment the line below

 #5.3

 CONFIG

 REQUIRED

)

On Android to use system installed AVL it is necessary to add CMAKE_FIND_ROOT_PATH_BOTH argument:

find_package(AVL CONFIG REQUIRED CMAKE_FIND_ROOT_PATH_BOTH)

Possible packages:

AVL - full library

AVL_Lite - lite library

Weaver - deep learning inference library

install_avlinstall_avl

Install all AVL libraries when executing make install or ninja install or building INSTALL project in
Visual Studio. It accepts a LIB argument to override default installation directory. It requires
find_package(AVL...) call first.

find_package(AVL CONFIG REQUIRED)

install_avl()

By default it installs to ${CMAKE_INSTALL_PREFIX}/bin on Windows and ${CMAKE_INSTALL_PREFIX}/lib on Linux.
When provided the LIB argument it installs to ${CMAKE_INSTALL_PREFIX}/${LIB_ARGUMENT}

install_avl(LIB "avl_directory")

Possible variants:

install_avl()

install_avl_lite()

install_weaver()

copy_avlcopy_avl

Copy all AVL libraries when compiling targets that depend on AVL to binary directory. By default it's
${CMAKE_BINARY_DIR} or ${CMAKE_BINARY_DIR}/$<CONFIG> on Windows. It requires find_package(AVL...) call
first.

https://cmake.org/documentation/

find_package(AVL CONFIG REQUIRED)

copy_avl()

Possible variants:

copy_avl()

copy_avl_lite()

copy_weaver()

Using Library on LinuxUsing Library on Linux

RequirementsRequirements

Aurora Vision Library is designed to be used with GCC compiler on Linux x86_64 and embedded ARMv8-A
systems. Currently gcc in version 9.3.1 is supported, and corresponding toolchains for embedded linux:
arm-linux-gnueabihf-, aarch64-linux-gnu-. Custom build can be prepared upon the earlier contact with
Aurora Vision team. The Aurora Vision Library is distributed as .tar.gz or .tar.xz archive. The library is
compatible with Debian-like system, including - but not limited to - Ubuntu distributions.

Common prerequisitesCommon prerequisites

Properly set locale on target computer is important. Non-existing locale will cause bugs and bad behavior.
To list locale that exists on your computer use: locale -a, and currently set: locale. Remember that
running your application as daemon (e.g. from systemd) may set different locale, than the one in your user
terminal. Refer to your Linux distribution documentation.

To build example in simple manner, GNU Make tool and CMake is needed.

Ubuntu 20.04/Debian 11 or newer:

Runtime:

package libc6 g 2.31

package libudev1 g 245.4

Development:

package g++ version g 9.4.0

package make version g 4.2.1

package cmake version g 3.16.3

sudo apt-get install cmake make g++

Examples:

sudo apt-get install libgtk-3-dev libsdl2-dev qtbase5-dev

For UserFilter example, you will need avexecutor

Rocky Linux 9/Fedora 31 (36 for QT)/OpenSUSE 15.3 or newer:

Runtime:

package glibc g 2.30

package systemd g 243.9

Development:

package gcc-c++ version g 9.3.1

package make version g 4.2.1

package cmake version g 3.17.4

CentOS/Fedora: dnf install gcc-c++ make cmake

OpenSUSE: zypper install gcc-c++ make cmake

Examples:

CentOS/Fedora: dnf install SDL2-devel qt5-qtbase-devel gtk3-devel

OpenSUSE: zypper install libSDL2-devel libqt5-qtbase-devel gtk3-devel

Generic:

Runtime:

libraries libc.so.6, libpthread.so.0, libm.so.6, libdl.so.2, librt.so.1, libgcc_s.so.1 from
glibc version g 2.30 or compatible (i.e. musl libc)

library libudev.so.1 from systemd version g 243.9

Supported input devicesSupported input devices

Installation instructionsInstallation instructions

In unpacked directory call the install script. In example: sudo ./install This command will install the
library to a proper directory in opt. It will also make the library visible to CMake find_package command.

Compilation instructionsCompilation instructions

Directory structureDirectory structure

Unpacked directory consists of following entries:

examples/ - directory contains source files of example programs written with Aurora Vision Library

include/ - this directory contains library header files

lib/ - here the .so file with library is stored, along with any kits

bin/ - directory for additional binaries, like Licensing tool.

/README - instruction of library usage

/sha512sum - checksums for all files in archive, check with sha512sum --quiet -c sha512sum

/metadata.json - file containing information about the optimal target system, and library version

/install - installation script

/uninstall - uninstall script, will be copied to installation directory, where it can be safely used

CompilationCompilation

Using CMakeUsing CMake

CMake is the recommended way to compile on linux, see documentation Using Library with CMake

Using Makefile or your custom build systemUsing Makefile or your custom build system

For compiling with Aurora Vision Library please remember to:

add the include/ subdirectory to the compiler include directories: -I switch

add the lib/ subdirectory to the linker directories: -L switch

link with Aurora Vision Library: -lAVL

use -rpath in linker options, LD_LIBRARY_PATH or LD_PRELOAD of libAVL.so file.

link with dependencies: -lpthread -lrt -ldl

One can consult makefile in the examples/ directory to see how to compile and link with Aurora Vision
Library.

Known compilation bugsKnown compilation bugs

In case of the following linker errors: (or similar)

/usr/bin/ld: warning: libiconv.so, needed by lib/libAVL.so, not found (try using -rpath or -rpath-link)

lib/libAVL.so: undefined reference to `libiconv'

lib/build/libAVL.so: undefined reference to `libiconv_close'

lib/build/libAVL.so: undefined reference to `libiconv_open'

It is a known gnu linker bug, affecting versions older than 2.28 (e.g. in Ubuntu 16.04).
To solve the problem you can:

Try a different linker (add for linking -fuse-ld=gold for gold or -fuse-ld=lld, consult your linux
distribution manual)

Link with the missing library (for example add -liconv)

Update the linker (binutils 2.28 or newer)

Licensing and distributionLicensing and distribution

Vendor x86_64 armv8

ximea � �

Allied Vision Vimba � �

Basler Pylon � �

LMI Gocator � �

AXIS � �

GenicamGenTL � �

Hilscher � �

OPCUA � �

SerialPort � �

NET SynView � �

Z4Sight � �

eBUS � �

https://docs.adaptive-vision.com/5.6/avl/getting_started/CMake.html

LicensingLicensing

File based licenses are supported on all Linux platforms. Dongle licenses depend on CodeMeter runtime.
Currently Codemeter runtime is available for x86_64 and ARMV7-A. To develop and debug programs written
with Aurora Vision Library, Library license has to be present. To run compiled binaries linked with Aurora
Vision Library, LibraryRuntime license has to be present.

One can use license_manager from bin/ directory to list currently installed file or dongle licenses:
license_manager list
Red marked licenses are invalid, for example past the license date or installed license for the wrong
machine (bad ID)

File LicenseFile License

To obtain license:

In a terminal, on the target machine run license_manager id from bin/ directory

Copy the printed Computer ID

Use that Computer ID to get a .avkey file from User Area on www.adaptive-vision.com website.

Download the key to the target machine

Install the license by oneone of the following methods:

Run in terminal license_manager install downloaded_file.avkey (Recommended)

Copy the .avkey file next to executable, that is using Aurora Vision Library

Dongle LicenseDongle License

Installed CodeMeter Runtime is required, as well as proper license available on plugged in dongle.

Download runtime package from WIBU website, section "CodeMeter User Runtime for Linux".
"Driver Only" (lite) version recommended for headless (no desktop GUI) installations. ARMV7-A is available
under "CodeMeter User Additional Downloads" as "Raspberry PI" version

DistributionDistribution

To distribute program with Aurora Vision Library, one have to provide license (file or dongle - depending
on system used) and the libavl.so. To provide the .so file, one can install SDK on target machine, but
this will provide headers etc., which may be unwanted. In such case, the library file, with any used kits
should be copied to suitable system directory, or the program has to be compiled with -rpath and relative
path to the .so file. Third option is to provide a boot script, which will set LD_LIBRARY_PATH or
LD_PRELOAD with libavl.so location.

Program development - general adviseProgram development - general advise

The most convenient way to make programs with Aurora Vision Library for Linux is to develop vision
algorithm using Aurora Vision Studio on Windows and then generating C++ code. This code can be further
changed or interfaced with rest of the system and tested on Windows. Then, cross-compiler can be used to
prepare Linux build, which will be provided to target machine. It is easy to organize work this way,
because:

developing vision algorithm using plain C++ is hard, troublesome and error prone, but Aurora Vision
Studio makes it easy,

programs written with Aurora Vision Library on Windows can be easily debugged using Microsoft Visual
Studio thanks to provided debug visualizers and the Image Watch extensions to Microsoft Visual Studio,

cross compilation using virtualization solution, like Vagrant, is easy and fast, and does not force
developer to use two systems simultaneously.

Of course, the programs can be also developed on Linux machine directly. Then a dose of work should be put
into writing good Makefile. Debugging can be done by GDB, but we do not provide debug symbols for Aurora
Vision Library.

Runtime considerationsRuntime considerations

Some architectures might impose restrictions on libavl code. In this section we present pitfalls the user
should be aware of.

Homogeneous Multiprocessor/SMPHomogeneous Multiprocessor/SMP

There are many identical cores. One might have a problem when cores span across multiple physical CPUs,
frequent on servers. The CPU's don't share CPU cache, so when execution of thread from CPUx/COREa is moved
to CPUy/COREb, cache needs to be updated. It imposes time penalty. A workaround would be to pin threads to
specific cores, (set affinity) or limit execution of libavl to specific number of cores on one physical
CPU.

use taskset linux command to limit execution on specific cores

use OMP_PROC_BIND=TRUE environment variable to bind threads to cores they started on

Heterogeneous MultiprocessorHeterogeneous Multiprocessor

There are different kinds of processors the code runs on. Some examples are ARM big.LITTLE architecture,
(where the cores mainly differ in maximum speed), or Tegra TX2 (where the cores serve different purpose).
This kind of architecture might also suffer from Homogeneous Multiprocessor problems, but might suffer
from different set of problems. One have to consider the cores are designed for low power and high
performance, single threaded multithreaded optimized. Use the same solutions as in previous point, just
take into account what type of algorithm will be executed.

Tegra TX2Tegra TX2

This CPU is an example of Heterogeneous Multiprocessor architecture. It comprises of 6 cores: 2 Denver2 4
Cortex-A57. Denver2 core is designed for single thread performance, while Cortex-A57 for multithreaded.
One can use both, but with thread binding, so threads are executed on the cores they started on. Limiting
to one type of core might be beneficial when power consumption is a factor. Remember that thread binding
might bind your application to core you did not want to use. Core 0 is Cortex-A57, core 1 and 2: Denver2,
and cores 3-5: Cortex-A57. Core 0 is always active.

Using User Filters on LinuxUsing User Filters on Linux

https://www.wibu.com/support/user/downloads-user-software.html

Creating Studio projectCreating Studio project

First you should create Aurora Vision Studio project and add new User Filter library on Windows. Refer to
Creating User Filters Studio article for details.

Implement and build your User Filter. Then in Aurora Vision Studio add it to program and use it as needed.
Note that path to the User Filter should be relative to the project.

Building User Filter on LinuxBuilding User Filter on Linux

On Linux install avexecutor. Copy source code of your User Filter to Linux. To build it using gcc, you
will need to:

add the avexecutor's include/ subdirectory to the compiler include directories: -I switch

add the avexecutor's lib/x86_64-linux-gnu/ subdirectory to the linker directories: -L switch

link with Aurora Vision Library Lite and UserFilters: -lAVL_Lite -lUserFilters

signify we are building a shared library: -shared -fPIC

set output name to .so: -o user_filter_library.so

Loading User Filter library from Studio programLoading User Filter library from Studio program

Copy Studio project files to Linux. Put built .so User Filter library in directory relative to project
files. Make sure the file name of User Filter selected on Windows (e.g. user_filter_library.dll) matches
name of .so file. The file extension will be changed automatically by Console application.

Then the program can be started as usual: <path to Console application> <path to .avproj file>

Using AVL instead of AVL LiteUsing AVL instead of AVL Lite

User Filter can alternatively be built using full AVL library. The process described above will need to be
changed as follows:

point compiler also to include and lib directories of AVL

link with AVL instead of AVL_Lite: -lAVL

copy libAVL.so from AVL directory to avexecutor/lib/x86_64-linux-gnu/ directory

change #include to <AVL.h>

remember to modify Visual Studio solution on Windows in a similar manner

https://docs.adaptive-vision.com/studio/extensibility/CreatingUserFilters.html

3. Technical Issues3. Technical Issues

Table of content:

Interfacing with Other Libraries

Loading Aurora Vision Studio Files (AVDATA)

Working with GenICam GenTL Devices

Processing Images in Worker Thread

Troubleshooting

Memory Leak Detection in Microsoft Visual Studio

ATL Data Types Visualizers

Optimizing Image Analysis for Speed

Deep Learning Training API

Interfacing with Other LibrariesInterfacing with Other Libraries

Aurora Vision Library contains the avl::Image class which represents an image. This article describes how
to create an avl::Image object with raw data acquired from cameras, and how to convert it to image
structures specific to other libraries.

Aurora Vision Library provides a set of sample converters. To use it in your program you should include a
specific header file which is available in Aurora Vision Library include directory (e.g.
AVLConverters/AVL_OpenCV.h). The list below presents all the available converters:

Euresys

MFC

MvAcquire

OpenCV

Pylon

QT

SynView

An example of using MFC converters can be found in the Aurora Vision Library directory in My Documents
(Examples\MFC Examples). Below is shown also an OpenCV converter example.

Example: Converting Between avl::Image and OpenCV MatExample: Converting Between avl::Image and OpenCV Mat

It is also possible to convert avl::Image to image structures from common libraries. The example code
snippets below show how to convert an avl::Image object to other structures.

#include <opencv2/highgui/highgui.hpp>

#include <AVLConverters/AVL_OpenCV.h>

#include <AVL.h>

avl::Image inputImage, processedImage;

cv::Mat cvImage;

int thresholdValue, rotateAngle;

//image processing

void ProcessImage()

{

 avl::Image image1;

 avl::ThresholdImage(inputImage, atl::NIL, (float)thresholdValue, atl::NIL, 0.0, image1);

 avl::RotateImage(image1, (float)rotateAngle, avl::RotationSizeMode::Fit,

 avl::InterpolationMethod::Bilinear, false, processedImage);

}

// callback

void on_trackbar(int, void*)

{

 ProcessImage();

 avl::AvlImageToCVMat_Linked(processedImage, cvImage);

 cv::imshow("CV Result Window", cvImage);

}

int main(void)

{

 // Load AVL image

 avl::Image monoImage, rgbImage;

 avl::TestImage(avl::TestImageId::Lena, rgbImage, monoImage);

 avl::DownsampleImage(monoImage, 1, inputImage);

 thresholdValue = 128;

 rotateAngle = 0;

 // Create OpenCV Gui

 cv::namedWindow("Settings Window", 1);

 cv::resizeWindow("Settings Window", 300, 80);

 cv::createTrackbar("Threshold", "Settings Window", &thresholdValue, 255, on_trackbar);

 cv::createTrackbar("Rotate", "Settings Window", &rotateAngle, 360, on_trackbar);

 // set trackbar

 on_trackbar(0, 0);

 cv::waitKey(0);

 return 0;

}

Example: avl::Image from pointer to image dataExample: avl::Image from pointer to image data

It is also possible to create an avl::Image object using a pointer to image data, without copying memory
blocks. This, however, requires compatible memory representations of images and proper information about
the image being created has to be provided.

The constructor shown below should be used for this operation:

Image::Image(int width, int height, int pitch, PlainType::Type type, int depth, void* data,

 atl::Optional< const avl::Region& > inRoi = atl::NIL);

Please note that all of the XxxToXxx_Linked functions do not copy data and the user has to take care of
freeing such data. See also the usage example in OpenCV converter above. Functions AvlImageToCVMat_Linked
and CVMatToAvlImage_Linked do not copy data.

Displaying Images Directly on WinAPI/MFC Device Context (HDC)Displaying Images Directly on WinAPI/MFC Device Context (HDC)

For convenience, there is also a function that directly displays an image on a WinAPI device context
(HDC). This function is defined in the header "AVLConverters/AVL_Winapi.h" as:

https://docs.adaptive-vision.com/5.6/avl/datatypes/Image.html#MemoryRepresentation

void DisplayImageHDC(HDC inHdc, avl::Image& inImage, float inZoomX = 1.0, float inZoomY = 1.0);

For sample program showing how to use this function, please refer to the official example in the "06
WinAPI tutorial" directory.

Loading Aurora Vision Studio Files (AVDATA)Loading Aurora Vision Studio Files (AVDATA)

Aurora Vision Studio has its own format for storing arbitrary objects - the AVDATA format. It is used for
storing elements of the program (paths, regions etc.) automatically, or manually when using "Export to
AVDATA file" option or the SaveObjectSaveObject and LoadObjectLoadObject generic filters.

Aurora Vision Library can load and save several types of objects in AVDATA format. This is done using
dedicated functions, two corresponding for each supported type. The functions start with LoadLoad and SaveSave
and accept two parameters - a filename and an object reference - for loading or saving.

 void LoadRegion

 (

 const File& inFilename, //:Name of the source file

 Region& outRegion //:Deserialized output Region

);

 void SaveRegion

 (

 const Region& inRegion, //:Region to be serialized

 const File& inFilename //:Name of the target file

);

The supported types include:

Region

Profile

Histogram

SpatialMap

EdgeModel

GrayModel

OcrMlpModel

OcrSvmModel

Image*

Because the LoadImageLoadImage function is a more general mechanism for saving and loading images into common file
formats (like BMP, JPG or PNG), the functions for loading and saving avl::Image as AVDATA are different:

 void LoadImageObject

 (

 const File& inFilename, //:Name of the source file

 Image& outImage //:Deserialized output Image

);

 void SaveImageObject

 (

 const Image& inImage, //:Image to be serialized

 const File& inFilename //:Name of the target file

)

Simple types like IntegerInteger, RealReal or StringString can be stored in files in textual form - by setting
inStreamModeinStreamMode to Text when using SaveObjectSaveObject - this can be read by formatted input output in C/C++ (for
example using functions from the scanf family).

Working with GenICam GenTL DevicesWorking with GenICam GenTL Devices

IntroductionIntroduction

GenICam GenTL is a standard that defines a software interface encapsulating a transport technology and
that allows applications to communicate with general vision devices without prior knowledge of its
communication protocol. GenTL supporting application (a GenTL consumer) is able to load a third party
dynamic link library (a GenTL provider) that is a kind of a "driver" for a vision device. GenICam standard
allows to overcome differences with communication protocols and technologies, and allows to handle
different devices in same common way. However application still needs to be aware of differences in device
capabilities and be prepared to cooperate with specific device class or device model.

Aurora Vision Library contains a built-in GenTL subsystem that helps and simplifies usage of a GenTL
device in vision application. AVL GenTL subsystem helps in loading provider libraries, enumerating GenTL
infrastructure, managing acquisition engine and frame buffers, converting image formats and implements
GenAPI interface.

In order to be able to use a GenTL provider it needs to be properly registered (installed) in local
system. Usually this task is performed by an installer supplied by a device vendor. Please note that a
32bit application requires a 32 bit provider library and a 64 bit application requires respectively a 64
bit provider library. A registered GenTL provider is characterized by a file with ".cti" extension. Path
to cti library containing folder is stored in an environmental variable named "GENICAM_GENTL32_PATH"
("GENICAM_GENTL64_PATH" for 64 bit providers).

Basic UsageBasic Usage

Functions designed for GenTL support can be found in GenTL and GenApi categories. A basic application will
first use a GenTL_OpenDevice function to open a device instance (to establish the connection) and to
request a handle for further operations on the device. This handle can be than used with GenApi functions
to access device specific configuration and manage them. When the device identifiers are not fully known,
or can dynamically change at runtime a GenTL_FindDevices function can be first used to enumerate available
GenTL devices.

To start streaming video out of configured device a GenTL_StartAcquisition function must be executed.

https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenApi/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenDevice.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenApi/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_FindDevices.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_StartAcquisition.html

After this sequentially upcoming images can be retrieved with GenTL_ReceiveImage or GenTL_TryReceiveImage
functions. Images will be stored in an input FIFO queue. Not retrieved images (on queue overflow) will be
dropped starting from the oldest one. To stop image acquisition a GenTL_StopAcquisition function should be
called. Image acquisition can be stopped and than started again multiple times for same device with
eventual configuration change in between (some parameters can be locked for time of image streaming).

To release the device instance its handle need to be closed with GenTL_CloseHandle function.

Advanced UsageAdvanced Usage

When more information need to be known about GenTL environment its structure can be explored using
GenTL_EnumLibraries, GenTL_GetLibraryDescriptor, GenTL_EnumLibraryInterfaces, GenTL_GetInterfaceDescriptor
functions.

When extended information or configuration, specific for GenTL provider or transport technology need to be
accessed, following functions can be considered: GenTL_OpenLibrarySystemModuleSettings,
GenTL_OpenInterfaceModuleSettings, GenTL_OpenDeviceModuleSettings, GenTL_OpenDeviceStreamModuleSettings.

Additional RequirementsAdditional Requirements

When using GenTL subsystem of Aurora Vision Library a "Genicam_Kit.dll" file is required to be in range of
application. This file (selected for 32/64 bit) can be found in Aurora Vision Library SDK "bin" directory.

Processing Images in Worker ThreadProcessing Images in Worker Thread

Introduction to the ProblemIntroduction to the Problem

Aurora Vision Library is a C++ library, that is designed for efficient image processing in C++
applications. A typical application uses a single primary thread for the user interface and can optionally
use additional worker threads for data processing without freezing the main window of the application.
Images processing can be a time-consuming task, so performing it in a separate worker thread is
recommended, especially for processing performed in continuous mode.

Processing images in a worker thread is asynchronous and it means that accessing the resources by the
worker thread and the main thread has to be coordinated. Otherwise, both threads could access the same
resource at the same time, what would lead to unpredictable data corruption. The typical resource that has
to be protected to be thread-safe is the image buffer. Typically, the worker thread of the vision
application has a loop. In this loop it grabs images from a camera and does some kind of processing.
Images are stored in memory of a buffer as avl::Image data. The main thread (UI thread) presents the
results of the processing and/or images from the camera. It has to be ensured that the images are not read
by the UI thread and processed by the worker thread at the same time.

Please note that the GUI controls should never be accessed directly from the worker thread. To display the
results of the worker thread processing in the GUI, a resource access control has to be used.

Example Application and Image Buffer SynchronizationExample Application and Image Buffer Synchronization

This article does not present the rules of multithreaded programming. It only focuses on the most typical
aspects of it, that can be met when writing applications with Aurora Vision Library. An example
application that uses the main thread and the worker thread can be found among the examples distributed
with Aurora Vision Library. It is called MFC Simple Streaming and the easiest way to open it is by opening
Examples directory of Aurora Vision Library from the Start Menu. The application is located in 03
GigEVision tutorial subdirectory. It is a good template for other vision applications processing images in
a separate thread. It is written using MFC, but the basics of multithreading stay the same for all other
technologies.

There are many techniques of synchronization of a shared resources access in a multithreading environment.
Each of them is good as long as it protects the resources in all states that the application can be in and
as long as it properly handles thrown exceptions, application closing etc.

In the example application, the main form of the application has a private field called m_videoWorker that
represents the worker thread:

class ExampleDlg : public CDialog

{

private:

 (...)

 GigEVideoWorker m_videoWorkerGigEVideoWorker m_videoWorker;

 (...)

}

The GigEVideoWorker class contains the image buffer:

class GigEVideoWorker

{

 (...)

private:

 avl::Image m_imageBufferavl::Image m_imageBuffer;

 (...)

}

This is the image buffer that contains the image received from the camera that needs to be protected from
parallel access from worker thread and from the main thread that displays the image in the main form. The
access synchronization is internally achieved using critical section and EnterCriticalSection and
LeaveCriticalSection functions of the Windows operating system. When one thread calls the
GigEVideoWorker::LockResults() function, it enters the critical section and no other thread can access the
image buffer until the thread that got the lock calls GigEVideoWorker::UnlockResults(). When one thread
enters the critical section, other threads that try to enter the critical section will be suspended
(blocked) until the one leaves the critical section.

Using functions like GigEVideoWorker::LockResults() and GigEVideoWorker::UnlockResults() is a good choice
for protecting the image buffer from accessing by multiple threads, but what if due to an error in the
code the resource is locked but never unlocked? It can happen for example in a situation when an exception
is thrown inside the critical section and the code lacks the try/catch statement in the function that
locks and should unlock the resource. In the example application this problem has been resolved using the
RAII programming idiom. RAII stands for Resource Acquisition Is Initialization and in short it means that
the resource is acquired by creating the synchronization object and is released by destroying it. In the
example application being described here, there is the class called VideoWorkerResultsGuard. It

https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_ReceiveImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_TryReceiveImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_StopAcquisition.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_CloseHandle.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_EnumLibraries.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_GetLibraryDescriptor.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_EnumLibraryInterfaces.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_GetInterfaceDescriptor.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenLibrarySystemModuleSettings.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenInterfaceModuleSettings.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenDeviceModuleSettings.html
https://docs.adaptive-vision.com/5.6/avl/functions/GenTL/GenTL_OpenDeviceStreamModuleSettings.html

exclusively calls the previously mentioned GigEVideoWorker::LockResults() and
GigEVideoWorker::UnlockResults() functions in constructor and destructor. The instance of this
VideoWorkerResultsGuard class is the synchronization object. The code of the class is listed below.

class VideoWorkerResultsGuard

{

private:

 GigEVideoWorker& m_object;

 VideoWorkerResultsGuard(const VideoWorkerResultsGuard&); // = delete

public:

 explicit VideoWorkerResultsGuard(GigEVideoWorker& object)

 : m_object(object)

 {

 m_object.LockResults();m_object.LockResults();

 }

 ~VideoWorkerResultsGuard()

 {

 m_object.UnlockResults();m_object.UnlockResults();

 }

};

It can be easily seen that when the object of VideoWorkerResultsGuard is created, the thread that creates
it calls the LockResults() function and by that it enters the critical section protecting the image
buffer. When the object is destroyed, the thread leaves the critical section. Please note that the
destructor of every object is automatically called in C++ when the automatic variable goes out of scope.
It also covers the cases, when the variable goes out of scope because of the exception thrown from within
of the critical section. Using RAII pattern allows programmer to easily synchronize the access to shared
resources from multiple threads. When a thread needs to access a shared image buffer, it has to create the
VideoWorkerResultsGuard object and destroy it (or let it be destroyed automatically when the object goes
out of scope) when the access to the image buffer is no longer needed. The example usage of this
synchronization looks as follows:

// Retrieve the results under lock.

{

 VideoWorkerResultsGuard guard(m_videoWorker);VideoWorkerResultsGuard guard(m_videoWorker);

 (...)

 avl::AVLImageToCImage(m_videoWorker.GetLastResultData()m_videoWorker.GetLastResultData(), width, height, false, m_lastImage);

 (...)

}

The method GetLastResultData() returns the reference to the shared image buffer. It can be safely used
thanks to the usage of VideoWorkerResultsGuard object.

Notifications about Image Ready to DisplayNotifications about Image Ready to Display

Another issue that needs to be considered in a typical application that processes images and uses a worker
thread is notifying the main thread that the image processed by the worker thread is ready to display.
Such notifications can be implemented in several ways. The one that has been used in the example
application is using system function PostMessage(). When the worker thread has the image ready for
presentation, it copies it to the m_lastResultData buffer (this is the protected one) and posts the
notification message to the main window of the application:

//

// TODO: Compute the result data and put them in the shared buffer (just copy the source image).

//

m_lastResultData = m_imageBuffer;

// Send notification message

if (PostMessage(m_hNotificationWindow, m_notificationMessage, 0, NULL)PostMessage(m_hNotificationWindow, m_notificationMessage, 0, NULL))

{

 m_lastResultProcessed = false;m_lastResultProcessed = false;

}

The message is received by the main (UI) thread. Once it's received, the main thread acquires the access
to the shared image buffer by creating the VideoWorkerResultsGuard object. Then, the image can be safely
displayed.

The worker thread has a flag called m_lastResultProcessed. The flag set to false indicates that the
notification about image ready to display had been posted to the main thread but the main thread has not
processed (displayed) the image yet. The flag is set to false just after posting the notification message.
The main thread sets the flag back to true using NotificationGiveFeedback() function:

void GigEVideoWorker::NotificationGiveFeedback(void)

{

 VideoWorkerResultsGuard guard(*this);

 m_lastResultProcessed = true;

}

Once the worker thread has sent the notification message, it can acquire and perform the next frame from
the camera, but there's no point in sending the next notification until the previous is performed by the
UI thread. Sending the new notifications without performing the old ones could lead to cumulating them in
the messages queue of the main window. This is why the worker thread of the example application checks if
the previous notification message has been performed and sends the next one only if the processing of the
previous is finished:

if (m_lastResultProcessedm_lastResultProcessed && NULL != m_hNotificationWindow)

{

 // Create the result in shared buffers under lock.

 VideoWorkerResultsGuard guard(*this);

 (...)

}

Please note that the flag is also protected by the VideoWorkerResultsGuard synchronization object, so the

main thread cannot set it to true in the moment directly after the worker thread posted the notification
message.

Issues of MultithreadingIssues of Multithreading

There are two primary issues to consider when using worker thread(s). The first one is destroying data by
unsynchronized access from multiple threads and the second one is a deadlock that can appear when there
are two (or more) resources to be synchronized.

Securing data integrity by the thread synchronization mechanisms has been shortly described in this
article and is implemented in the example application distributed with Aurora Vision Library. As a rule of
a thumb, please assume that every image that can be accessed from more then one thread should be protected
by some kind of synchronization. We recommend the standard C++ RAII pattern as an easy to use and secure
solution.

The example application described in this article contains only one resource 3 a critical section
represented by the VideoWorkerResultsGuard class, but of course there may exist some applications where
there is more then one resource to share. In such cases, the synchronization of the threads has to be
implemented very carefully because there is a danger of deadlock that can be a result of bad
implementation. If your application freezes (stops responding) and you have more then one synchronized
resource, please review the synchronization code.

TroubleshootingTroubleshooting

This article describes the most common problems that might appear when building and executing programs
that use Aurora Vision Library.

Problems with BuildingProblems with Building

error LNK2019: unresolved external symbol _LoadImageA referenced in functionerror LNK2019: unresolved external symbol _LoadImageA referenced in function
error C2039: 'LoadImageA' : is not a member of 'avl'error C2039: 'LoadImageA' : is not a member of 'avl'

The problem is related to including the "windows.h" file. It defines a macro called LoadImage, which has
the same name as one of the functions of Aurora Vision Library. Solution:

Don't include both "windows.h" and "AVL.h" in a single compilation unit (cpp file).

Use #undef LoadImage after including "windows.h".

error LNK1123: failure during conversion to COFF: file invalid or corrupterror LNK1123: failure during conversion to COFF: file invalid or corrupt

If you encounter this problem, just disable the incremental linking (properties of the project |
Configuration Properties | Linker | General | Enable Incremental Linking, set to No (/INCREMENTAL:NO)).
This is a known issue of VS2010 and more information can be found on the Internet. Installing VS2010
Service Pack 1 is an alternative solution.

Exceptions Thrown in Run TimeExceptions Thrown in Run Time

Exception from the Exception from the avlavl namespace is thrown namespace is thrown

Aurora Vision Library uses exceptions to report errors in the run-time. All the exceptions are defined in
avl namespace and derive from avl::Error. To solve the problem, add a try/catch statement and catch all
avl::Error exceptions (or only selected derived type). Every avl::Error object has the Message() method
which should provide you more detailed information about the problem. Remember that a good programming
practice is catching C++ exceptions by a const reference.

 try

 {

 // your code here

 }

 catch (const atl::Error& er)

 {

 cout << er.Message();

 }

High CPU Usage When Running AVL Based Image ProcessingHigh CPU Usage When Running AVL Based Image Processing

When working with some AVL image processing functions it is possible that the reported CPU usage can reach
50~100% across all CPU cores even in situations when the actual workload does not justify that hight CPU
utilization. This behavior is a side effect of a parallel processing back-end worker threads actively
waiting for the next task. Although the CPU utilization is reported to be high those worker threads will
not prevent other task to be executed when needed, so this behavior should not be a problem in most
situations.

For situations when it is not desired this behavior can be changed (e.g. when profiling the application,
performance testing or in any situation, when high CPU usage interfere with other system). To block the
worker threads from idling for extended period of time the environment variable OMP_WAIT_POLICY must be
set to the value PASSIVE, before the application is started:

 set OMP_WAIT_POLICY=PASSIVE

This variable is checked when the DLLs are loaded, so setting it from the application code might not be
effective.

Memory Leak Detection in Microsoft Visual StudioMemory Leak Detection in Microsoft Visual Studio

When creating applications using Aurora Vision Library in Microsoft Visual Studio, it may be desirable to
enable automated memory leak detection possible in Debug builds. The details of using this feature is
described here: Finding Memory Leaks Using the CRT Library.

Some project types, notably MFC (Microsoft Foundation Classes) Windows application projects, have this
mechanism enabled by default.

False Positives of Memory Leaks in AVL.dllFalse Positives of Memory Leaks in AVL.dll

Using a default configuration, as described in Project Configuration can lead to false positives of memory
leaks, which come from the AVL.dll library. The output of a finished program can look similar to the
following:

https://msdn.microsoft.com/en-us/library/x98tx3cf.aspx
https://docs.adaptive-vision.com/5.6/avl/getting_started/ProjectConfiguration.html

(...)

The thread 'Win32 Thread' (0x898) has exited with code 0 (0x0).

The thread 'Win32 Thread' (0x168c) has exited with code 0 (0x0).

Detected memory leaks!

Dumping objects ->

{5573} normal block at 0x00453DB8, 8 bytes long.

 Data: < > 01 00 00 00 00 00 00 00

{5572} normal block at 0x00453D68, 20 bytes long.

 Data: <D]NU =E > 44 5D 4E 55 CD CD CD CD 02 00 00 00 B8 3D 45 00

{5571} normal block at 0x00453C18, 4 bytes long.

 Data: <X NU> 58 06 4E 55

(...)

These are not actual memory leaks, but internal resources of AVL.dll, which are not yet released when the
memory leaks check is being run. Because there are many such allocated blocks reported, the actual memory
leaks in your program can pass unnoticed.

Solution: Delayed Loading of AVL.dllSolution: Delayed Loading of AVL.dll

To avoid these false positives, AVL.dll should be configured to be delay loaded. This can be done in the
Project Properties, under
Configuration Properties » Linker » InputConfiguration Properties » Linker » Input:

Further ConsequencesFurther Consequences

With this configuration, your program will not try to load AVL.dll until it uses the first function from
Aurora Vision Library. This will be also connected with license checking.

The program will stop if AVL.dll is missing: if AVL.dll was not delay loaded, this would happen at start
time (the program would refuse to run). This allows the program to work without AVL.dll, and use it only
when it is available. The availability of AVL.dll can be checked beforehand, using LoadLibrary or
LoadLibraryEx functions.

ATL Data Types VisualizersATL Data Types Visualizers

Data VisualizersData Visualizers

Data visualizers present data during the debugging session in a human-friendly form. Microsoft Visual
Studio allows users to write custom visualizers for C++ data. Aurora Vision Library is shipped with a set
of visualizers for the most frequently used ATL data types: atl::String, atl::Array, atl::Conditional and
atl::Optional.

Visualizers are automatically installed during installation of Aurora Vision Library and are ready to use,
but they are also available at atl_visualizers subdirectory of Aurora Vision Library installation path.

For more information about visualizers, please refer to the MSDN.

Example ATL data visualizationExample ATL data visualization

Please see the example variables definition below and their visualization without and with visualizers.

atl::String str = L"Hello world";

atl::Conditional nil = atl::NIL;

atl::Conditional conditionalFive = 5;

atl::Array array(3, 5);

Data preview without ATL visualizers installed:

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://msdn.microsoft.com/en-us/library/zayyhzts.aspx

The same data presented using AVL visualizers:

Image Watch extensionImage Watch extension

For Microsoft Visual Studio 2015, 2017 and 2019 an extension Image Watch is available. Image Watch allows
to display images during debugging sessions in window similar to "Locals" or "Watch". To make Image Watch
work correctly with avl::Image type, Aurora Vision Library installer provides avl::Image visualizer for
Image Watch. If one have Image Watch extension and AVL installed, preview of images can be enabled by
choosing "View->Other Windows->Image Watch" from Microsoft Visual Studio menu.

avl::Image description for Image Watch extension is included in atl.natvis file, which is stored in
atl_visualizers folder in Aurora Vision Library installation directory. atl.natvis file is installed
automatically during Aurora Vision Library installation.

When program is paused during debug session, all variables of type avl::Image can be displayed in Image
Watch window, as shown below:

Image displayed inside Image Watch can be zoomed. When the close-up is large enough, decimal values of
pixels' channel will be displayed. Hexadecimal values can be displayed instead, if appropriate option from
context menu is selected.

Image Watch is quite powerful tool - one can copy address of given pixel, ignore alpha channel and much
more. All options are described in its documentation, which is accessible from the Image Watch site at:

ImageWatch 2019 - for Microsoft Visual Studio 2019

ImageWatch 2017 - for Microsoft Visual Studio 2017

ImageWatch - for older versions of Microsoft Visual Studio

https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2019
https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2017
https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch

Optimizing Image Analysis for SpeedOptimizing Image Analysis for Speed

General RulesGeneral Rules

Rule #1: Do not compute what you do not need.Rule #1: Do not compute what you do not need.

Use image resolution well fitted to the task. The higher the resolution, the slower the processing.

Use the inRoiinRoi input of image processing functions to compute only the pixels that are needed in
further processing steps.

If several image processing operations occur in sequence in a confined region then it might be better
to use CropImage at first.

Do not overuse images of types other than UInt8 (8-bit).

Do not use multi-channel images, when there is no color information being processed.

If some computations can be done only once, move them before the main program loop, or even to a
separate function.

Rule #2: Prefer simple solutions.Rule #2: Prefer simple solutions.

Do not use Template Matching if more simple techniques as Blob Analysis or 1D Edge Detection would
suffice.

Prefer pixel-precise image analysis techniques (Region Analysis) and the Nearest Neighbour (instead of
Bilinear) image interpolation.

Consider extracting higher level information early in the program 3 for example it is much faster to
process Regions than Images.

Rule #3: Mind the influence of the user interface.Rule #3: Mind the influence of the user interface.

Note that displaying data in the user interface takes much time, regardless of the UI library used.

Mind the Diagnostic Mode. Turn it off whenever you need to test speed. Diagnostic Mode can be turn off
or on by EnableAvlDiagnosticOutputs function. One can check, if Diagnostic Mode is turned on by
GetAvlDiagnosticOutputsEnabled function.

Before optimizing the program, make sure that you know what really needs optimizing. Measure execution
time or use a profiler.

Common Optimization TipsCommon Optimization Tips

Apart from the above general rules, there are also some common optimization tips related to specific
functions and techniques. Here is a check-list:

Template Matching: Prefer high pyramid levels, i.e. leave the inMaxPyramidLevelinMaxPyramidLevel set to atl::NIL, or
to a high value like between 4 and 6.

Template Matching: Prefer inEdgePolarityModeinEdgePolarityMode set not to Ignore and inEdgeNoiseLevelinEdgeNoiseLevel set to Low.

Template Matching: Use as high values of the inMinScoreinMinScore input as possible.

Template Matching: If you process high-resolution images, consider setting the inMinPyramidLevelinMinPyramidLevel to
1 or even 2.

Template Matching: When creating template matching models, try to limit the range of angles with the
inMinAngleinMinAngle and inMaxAngleinMaxAngle inputs.

Template Matching: Consider limiting inSearchRegioninSearchRegion. It might be set manually, but sometimes it also
helps to use Region Analysis techniques before Template Matching.

Do not use these functions in the main program loop: CreateEdgeModel1, CreateGrayModel, TrainOcr_MLP,
TrainOcr_SVM.

If you always transform images in the same way, consider functions from the Image Spatial Transforms
Maps category instead of the ones from Image Spatial Transforms.

Do not use image local transforms with arbitrary shaped kernels: DilateImage_AnyKernel,
ErodeImage_AnyKernel, SmoothImage_Mean_AnyKernel. Consider the alternatives without the "_AnyKernel"
suffix.

SmoothImage_Median can be particularly slow. Use Gaussian or Mean smoothing instead, if possible.

Library-specific OptimizationsLibrary-specific Optimizations

There are some optimization techniques that are available only in Aurora Vision Library and not in Aurora
Vision Studio. These are:

In-Place Data ProcessingIn-Place Data Processing

See: In-Place Data Processing.

Re-use of Image MemoryRe-use of Image Memory

Most image processing functions allocate memory for the output images internally. However, if the same
object is provided in consecutive iterations and the dimensions of the images do not change, then the
memory can be re-used without re-allocation. This is very important for the performance considerations,
because re-allocation takes time which is not only significant, but also non-deterministic. Thus, it is
highly advisable to move the image variable definition before the loop it is computed in:

// Slow code

while (...)

{

 Image image2;

 ThresholdImage(image1, atl::NIL, 128.0f, atl::NIL, 0.0f, image2);

}

// Fast code

Image image2;

while (...)

{

 ThresholdImage(image1, atl::NIL, 128.0f, atl::NIL, 0.0f, image2);

}

https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImage.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Image.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Image.html
https://docs.adaptive-vision.com/5.6/avl/functions/AVLCommon/EnableAvlDiagnosticOutputs.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/DilateImage_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Mean_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.adaptive-vision.com/5.6/avl/introduction/ProgrammingConventions.html#inplace

// Fast code (also in the first iteration)

Image image2(752, 480, PlainType::UInt8, 1, atl::NIL); // memory pre-allocation (dimensions must be known)

while (...)

{

 ThresholdImage(image1, atl::NIL, 128.0f, atl::NIL, 0.0f, image2);

}

Skipping Background InitializationSkipping Background Initialization

Almost all image processing functions of Aurora Vision Library have an optional inRoiinRoi parameter, which
defines a region-of-interest. Outside this region the output pixels are initialized with zeros. Sometimes,
when the rois are very small, the initialization might take significant time. If this is an internal
operation and the consecutive operations do not read that memory, the initialization can be skipped by
setting IMAGE_DIRTY_BACKGROUND flag in the output image. For example, this is how dynamic thresholding is
implemented internally in AVL, where the out-of-roi pixels of the blurredblurred image are not meaningful:

Image blurred;

blurred.AddFlags(IMAGE_DIRTY_BACKGROUND);

SmoothImage_Mean(inImage, inRoi, inSourceRoi, atl::NIL, KernelShape::Box, radiusX, radiusY, blurred);

ThresholdImage_Relative(inImage, inRoi, blurred, inMinRelativeValue, inMaxRelativeValue, inFuzziness, outMonoImage);

Library InitializationLibrary Initialization

Before you call any AVL function it is recommended to call the InitLibrary function first. This function
is responsible for precomputing library's global data. If it is not used explicitly, it will be called
within the first invocation of any other AVL function, taking some additional time.

Configuring Parallel ComputingConfiguring Parallel Computing

The functions of Aurora Vision Library internally use multiple threads to utilize the full power of multi-
core processors. By default they use as many threads as there are physical processors. This is the best
setting for majority of applications, but in some cases another number of threads might result in faster
execution. If you need maximum performance, it is advisable to experiment with the
ControlParallelComputing function with both higher and lower number of threads. In particular:

If the number of threads is higherhigher than the number of physical processors, then it is possible to
utilize the Hyper-Threading technology.

If the number of threads is lowerlower than the number of physical processors (e.g. 3 threads on a quad-
core machine), then the system has at least one core available for background threads (like image
acquisition, GUI or computations performed by other processes), which may improve its responsiveness.

Configuring Image Memory PoolsConfiguring Image Memory Pools

Among significant factors affecting function performance is memory allocation. Most of the functions
available in Aurora Vision Library re-use their memory buffers between consecutive iterations which is
highly beneficial for their performance. Some functions, however, still allocate temporary image buffers,
because doing otherwise would make them less convenient in use. To overcome this limitation, there is the
function ControlImageMemoryPools which can turn on a custom memory allocator for temporary images.

There is also a way to pre-allocate image memory before first iteration of the program starts. For this
purpose use the InspectImageMemoryPools function at the end of the program, and 3 after a the program is
executed 3 copy its outPoolSizesoutPoolSizes value to the input of a ChargeImageMemoryPools function executed at the
beginning. In some cases this will improve performance of the first iteration of program.

Using GPGPU/OpenCL ComputingUsing GPGPU/OpenCL Computing

Some functions of Aurora Vision Library allow to move computations to an OpenCL capable device, like a
graphics card, in order to speed up execution. After proper initialization, OpenCL processing is performed
completely automatically by suitable functions without changing their use pattern. Refer to "Hardware
Acceleration" section of the function documentation to find which functions support OpenCL processing and
what are their requirements. Be aware that the resulting performance after switching to an OpenCL device
may vary and may not always be a significant improvement relative to CPU processing. Actual performance of
the functions must always be verified on the target system by proper measurements.

To use OpenCL processing in Aurora Vision Library the following is required:

a processing device installed in the target system supporting OpenCL C language in version 1.1 or
greater,

a proper and up-to-date device driver installed in the system,

a proper OpenCL runtime software provided by its vendor.

OpenCL processing is supported for example in the following functions: RgbToHsi, HsiToRgb,
ImageCorrelationImage, DilateImage_AnyKernel.

To enable OpenCL processing in functions an AvsFilter_InitGPUProcessing function must be executed at the
beginning of a program. Please refer to that function documentation for further information.

Deep Learning Training APIDeep Learning Training API

Note:Note: This article is related to the C++ Deep Learning API for Feature Detection and Anomaly Detection
techniques in 5.6 version only.

Table of contents:

https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InitLibrary.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/ControlParallelComputing.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/ControlImageMemoryPools.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/InspectImageMemoryPools.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/ChargeImageMemoryPools.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageColorSpaces/RgbToHsi.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageColorSpaces/HsiToRgb.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/DilateImage_AnyKernel.html
https://docs.adaptive-vision.com/5.6/avl/functions/Configuration/AvsFilter_InitGPUProcessing.html

1. Overview

2. Namespaces

3. Classes and Types

4. Functions

ParseConfigFromFile

Configure

StartTraining

SaveModel

LoadModel

GetModelStateFilePath & GetModelWeaverFilePath

InferAndGrade

5. Handling Events

6. Usage Example

7. JSON Configuration Example

8. Best Practices

9. Limitations and Notes

OverviewOverview

The Deep Learning API provides a comprehensive framework for training and deploying Deep Learning models,
focused on feature detection tasks. It offers an object-oriented interface that simplifies the
complexities of configuring and managing Deep Learning operations. Whole API declaration is located in
Api.h file. under avl namespace.

NamespacesNamespaces

avl: Main namespace containing all public-facing classes and types.

Classes and TypesClasses and Types

avl::DetectFeaturesTrainingavl::DetectFeaturesTraining

This is the primary class users should interact with for feature detection training. It is derived from
TrainingBase and provides specialized methods and properties for configuring and managing feature
detection tasks.

ConstructorsConstructors

DetectFeaturesTraining();

explicit DetectFeaturesTraining(const atl::String& url);

Configuration MethodsConfiguration Methods

Training configuration can be performed in two ways:

1. Via Set Methods:Via Set Methods: Configuration can be done using methods like SetDevice, SetNetworkDepth, and other
Set* methods. If a specific Set* method is not called, the default value will be used.

2. Via JSON File:Via JSON File: Use the ParseConfigFromFile method to load configuration from a JSON file.

EnumsEnums

SetType: Specifies the dataset role (Train, Valid, Test, Unknown).

DeviceType: Defines the hardware device for training (CUDA, CPU).

ModelTypeId: Identifies the model type (e.g., DetectFeatures, AnomalyDetection2SimilarityBased).

FunctionsFunctions

ParseConfigFromFileParseConfigFromFile

Loads configuration from a JSON file.

void ParseConfigFromFile(const atl::String& jsonConfigFilePath);

Example of JSON file configuration below.

StartTrainingStartTraining

Begins the training process.

void StartTraining();

SaveModelSaveModel

Saves the trained model to disk in two formats:

A model state file (.pte) for internal use and training continuation

A Weaver model file (.avdlmodel) for deployment in applications

Method SignaturesMethod Signatures

void SaveModel(const atl::Optional<atl::String>& modelDirectoryPath = atl::NIL, const bool overwritePreviousModel =

false);

void SaveModel(const char* modelDirectoryPath, const bool overwritePreviousModel = false);

ParametersParameters

modelDirectoryPath: Optional path to a directory where model files will be saved. If not provided
(default), models are saved in the default directory: [current working directory]/Model/models/

overwritePreviousModel: When set to true, any existing model files at the destination will be
overwritten. When false (default), and model files exist, an error will be raised.

Helper MethodsHelper Methods

After saving, you can retrieve the exact paths to the saved model files using:

GetModelStateFilePath(): Returns the path to the .pte model state file

GetModelWeaverFilePath(): Returns the path to the .avdlmodel Weaver model file

Usage ExamplesUsage Examples

// 1. Save to default location:

training.SaveModel();

// 2. Save to default location and overwrite existing files:

training.SaveModel(atl::NIL, true);

// 3. Save to custom location:

training.SaveModel("C:/My/Models/Path");

// 4. Save to custom location and overwrite existing files:

training.SaveModel("C:/My/Models/Path", true);

// 5. Get saved file paths:

std::cout << "Model State (.pte) saved to: " << training.GetModelStateFilePath().CStr8() << std::endl;

std::cout << "Weaver Model (.avdlmodel) saved to: " << training.GetModelWeaverFilePath().CStr8() << std::endl;

LoadModelLoadModel

Loads a previously saved model state (.pte) file for inference.

Method SignaturesMethod Signatures

void LoadModel(const atl::String& modelFilePath);

void LoadModel(const char* modelFilePath);

ParametersParameters

modelFilePath: Path to a model state file (.pte) to load. The method will load the specified model
file for inference operations.

FunctionalityFunctionality

Loading a model allows you to:

Perform inference on new images using a trained model

Usage ExamplesUsage Examples

// 1. Load a specific model file:

training.LoadModel("C:/My/Models/Path/model.pte");

// 2. Load using the path from a previous save operation (PTE file):

training.SaveModel(); // Save first

training.LoadModel(training.GetModelStateFilePath()); // Load the saved model

Important NotesImportant Notes

This method loads only the model state (.pte) file used for training and inference within this API

The Weaver model (.avdlmodel) files created by SaveModel() are for deployment in production
applications

After loading, the model is immediately ready for inference with InferAndGrade()

GetModelStateFilePath & GetModelWeaverFilePathGetModelStateFilePath & GetModelWeaverFilePath

Helper methods to retrieve the paths of saved model files.

Method SignaturesMethod Signatures

atl::String GetModelStateFilePath();

atl::String GetModelWeaverFilePath();

Return ValuesReturn Values

GetModelStateFilePath(): Returns the full path to the saved model state file (.pte)

GetModelWeaverFilePath(): Returns the full path to the saved Weaver model file (.avdlmodel)

UsageUsage

These methods can be called only after SaveModel()after SaveModel() to get the exact file paths where the models were
saved:

training.SaveModel("./MyModels");

std::cout << "PTE model saved to: " << training.GetModelStateFilePath().CStr8() << std::endl;

std::cout << "Weaver model saved to: " << training.GetModelWeaverFilePath().CStr8() << std::endl;

InferAndGradeInferAndGrade

Performs inference and grades the results. If the InferResultReceived method is overridden, it will be
utilized during the inference process.

void InferAndGrade(

 const atl::String& imageFilePath,

 const Annotation& annotation,

 const atl::Optional<avl::Region>& roi = atl::NIL,

 const atl::Optional<atl::Array<atl::String>>& setNames = atl::NIL);

ParametersParameters

imageFilePath: Path to the image for inference.

annotation: Annotation with class name (and optional region) used for grading or context.

roi (optional): Region of interest. When omitted or atl::NIL, the full image is used.

setNames (optional): Logical grouping / tag list for evaluation summary (e.g. custom test subsets).

Handling EventsHandling Events

To communicate with the user during training and inference, several events are available:

TrainingProgressReceived(double progress): Called to update progress during training.

InferResultReceived(const atl::Array<avl::Image>&): Invoked when inference results are available.

Usage ExampleUsage Example

Below is an example demonstrating how to use the API for training a feature detection model:

#include "Api.h"

#include <iostream>

using namespace avl;

class MyTraining : public DetectFeaturesTraining

{

public:

 MyTraining()

 {

 }

 void TrainingProgressReceived(double progress) override

 {

 std::cout << "Progress: " << progress << std::endl;

 }

 void InferResultReceived(const atl::Array<avl::Image>& inferResultImages) override

 {

 (void)inferResultImages;

 // for (const auto& inferResultImage : inferResultImages)

 // std::cout << "InferResult: " << "Width: " << inferResultImage.Width() <<, " Height: " <<

inferResultImage.Height() << std::endl;

 }

};

int main()

{

 MyTraining training;

 // Training dataset

 auto myTrainingSamples = atl::Array<atl::String>();

 myTrainingSamples.PushBack("Images/train/010.png");

 myTrainingSamples.PushBack("Images/train/011.png");

 myTrainingSamples.PushBack("Images/train/012.png");

 // Validation dataset

 auto myValidationSamples = atl::Array<atl::String>();

 myValidationSamples.PushBack("Images/valid/020.png");

 myValidationSamples.PushBack("Images/valid/021.png");

 myValidationSamples.PushBack("Images/valid/022.png");

 // Test dataset

 auto myTestSamples = atl::Array<atl::String>();

 myTestSamples.PushBack("Images/test/140.png");

 myTestSamples.PushBack("Images/test/141.png");

 myTestSamples.PushBack("Images/test/142.png");

 // Set names for samples used for infer and grade

 auto mySetNames = atl::Array<atl::String>();

 mySetNames.PushBack("my test set 1");

 mySetNames.PushBack("my test set 2");

 // Create a simple annotation mask for the training samples.

 atl::String myClassName = "thread";

 const int width = 648; // Example width and height, should match your training images

 const int height = 486;

 avl::Region myRegion(width, height);

 for (int y = height / 4; y < (height / 4 + height / 2); ++y)

 myRegion.Add(width / 4, y, (width / 4 + width / 2));

 auto myAnnotation = Annotation(myClassName, myRegion);

 // Set training configuration

 // MANUALLY:

 training.SetNetworkDepth(3);

 training.SetIterations(1);

 training.SetDevice(DeviceType::CUDA);

 training.SetToGrayscale(true);

 training.SetAugNoise(5.5);

 // training.SetClassNames(myClassName); //Optional

 // Or from file:

 // training.ParseConfigFromFile("detect_features_config.json");

 // OPTIONAL:

 // training.Configure(); // Optional

 // training.GetConfig(); // Call `training.Configure();` before `training.GetConfig()` otherwise it will use default

config

 for (const auto& sample : myTrainingSamples)

 training.SetSample(sample, myAnnotation, SetType::Train);

 for (const auto& sample : myValidationSamples)

 training.SetSample(sample, myAnnotation, SetType::Valid);

 training.StartTraining();

 training.SaveModel();

 std::cout << "Model State (.pte) saved into file: " << training.GetModelStateFilePath().CStr8() << std::endl;

 std::cout << "Model Weaver (.avdlmodel) saved into file: " << training.GetModelWeaverFilePath().CStr8() << std::endl;

 // Load the model state for inference (use .pte file, not .avdlmodel)

 training.LoadModel(training.GetModelStateFilePath());

 for (const auto& sample : myTestSamples)

 training.InferAndGrade(sample, myAnnotation, atl::NIL, mySetNames);

 return 0;

}

JSON Configuration ExampleJSON Configuration Example

Below is an example of JSON Configuration File for a feature detection model:

{

 "device": "cuda",

 "device_id": 0,

 "is_continuation": false,

 "network_depth": 3,

 "iterations": 2,

 "min_number_of_tiles": 6,

 "need_to_convert_samples": false,

 "stop.training_time_s": 0,

 "stop.validation_value": 0.0,

 "stop.stagnant_iterations": 0,

 "feature_size": 96,

 "aug.rotation": 0.0,

 "aug.scale.min": 1.0,

 "aug.scale.max": 1.0,

 "aug.shear.vertical": 0.0,

 "aug.shear.horizontal": 0.0,

 "aug.flip.vertical": false,

 "aug.flip.horizontal": false,

 "aug.noise": 2.0,

 "aug.blur": 0,

 "aug.luminance": 0.04,

 "aug.contrast": 0.0,

 "to_grayscale": false,

 "downsample": 2,

 "is_mega_tiling": false,

 "mega_tile_size": 128,

 "class_names": "thread",

 "adv.class_names_sep": ";"

}

Best PracticesBest Practices

Use DetectFeaturesTraining for feature detection tasks instead of directly using TrainingBase.

Extend DetectFeaturesTraining for custom behavior during training.

Ensure balanced datasets for training and validation.

Use callback methods to monitor training progress.

Limitations and NotesLimitations and Notes

The ExportQuantizedModel method is not supported for DetectFeaturesTraining.

Configuration can be done through property setters or by loading a JSON configuration file.

SaveModel() creates two files: a .pte file for training/inference and a .avdlmodel file for
deployment.

LoadModel() only loads .pte files for inference operations within this API.

Weaver model files (.avdlmodel) are intended for deployment in production applications, not for
loading back into the training API.

Provide an atl::Optional<avl::Region> ROI to limit inference processing area; pass atl::NIL (or omit
parameter) to use the full image.

An Annotation without a region is valid for tasks that don't require pixel masks.

4. Working with GigE Vision®4. Working with GigE Vision®
DevicesDevices

Table of content:

GigE Vision® Device Manager
Connecting Devices
Enabling Traffic in Firewall
Enabling Jumbo Packets
Device Settings Editor
Known Issues

GigE Vision® Device ManagerGigE Vision® Device Manager

The Device Manager is available as a separate tool in Aurora Vision Library SDK.

Device Manager FunctionsDevice Manager Functions

Typical state of the Device Manager is shown on image below. Note that the window may change its appearance depending on its purpose (like selecting a

device address in a filter).

At first the manager will search local network for active devices. All found devices will be shown in list with the following information:

manufacturer name and device name, current IP address, network interface hardware address (MAC address), serial number (if supported), user specified

name (saved in the device memory; if supported by device). Informations like MAC address and serial number should be printed on the device casing for

easy identification. Sometimes, when a device has more than one interface, is may appear in list more that once. In this situation every entry in the

list identifies another device feature.

RefreshRefresh

Refresh button performs a new search in the network. Use this function when the network configuration has been changed, a new device has been plugged

in or when your device has not been found at startup.

ToolsTools

Tools button opens a menu with functions designed for device configuration. Some of these functions are device dependant and require the user to

selected a device on the list first (they are also available in a device context menu).

Tool: Access Device Settings...Tool: Access Device Settings...

This tool allows to access device-specific parameters prepared by its manufacturer and available through GenICam interface.

See: Device Settings Editor

Tool: Setup Device Network Interface...Tool: Setup Device Network Interface...

This tool is intended to manage network configuration of a device network adapter.

Static addressStatic address 4 this field allows to set a static (persistent) network configuration saved in device non-volatile
memory. Use this setting when the device is identified by IP address that cannot change or when automatic address
configuration is not available. This field has no effect when Use static IP field is not checked.
Current addressCurrent address 4 this read-only field shows current network configuration of a device, for example the address
assigned to it by a DHCP server.

https://docs.adaptive-vision.com/5.6/avl/technical_issues/gigevision/DeviceSettingsEditor.html

Device IP configurationDevice IP configuration 4 this field allows to activate or deactivate specified methods of acquiring addresses by
a device on startup. Some of this options can be not available (grayed) when the device is not supporting specified
mode.

Use static IPUse static IP 4 Device will use address specified in Static address field.
Use DHCP serverUse DHCP server 4 When a DHCP server is available in the network, devices will acquire automatically assigned
address from it.
Use Link-local addressUse Link-local address 4 When there is no other method available a device will try to find a free address from
169.254.-.- range. When using this method (for example on a direct connection between the device and a computer)
the device will take significantly more time to become available in network after startup.

After clicking OK the new configuration will be send to a device. Configuration can be changed only when the device is not used by another application

and/or is not streaming video. New configuration may be not available until the device is restarted or reconnected.

Tool: Assign Temporary IP for Unreachable DeviceTool: Assign Temporary IP for Unreachable Device

This tool is intended for situations when a device cannot be accessed because of its invalid or unspecified network configuration (note that this

should be a very rare case and usually the device should appear in list). The tool allows to immediately change network address of an idle device

(thus realizing GigE Vision® FORCE IP function).

This tool requires a user to specify device hardware network adapter MAC address (should be printed on device casing). After that a new IP

configuration can be specified. The address can be changed only when the device is idle (is not connected to other application and not streaming

video). The new address will be available immediately after successful send operation.

Tool: Application Transport Settings...Tool: Application Transport Settings...

This tool allows to access and edit application settings related with driver transport layer, like connection attempts and timeouts. Settings are

saved and used at whole application level. Changes affects only newly opened connections.

Changes made in Device Manager application does not affect applications based on Aurora Vision Library. Application must set up its transport layer

configuration individually (see GigEVision_OpenSystemConfiguration).

Tool: Open GenICam XML DirectoryTool: Open GenICam XML Directory

GigE Vision® devices are implementing GenICam standard. GenICam standard requires that a device must be described by a special XML file that defines

all device parameters and capabilities. This file is usually obtained automatically by the application from the device memory or from manufacturer's

internet web page. Sometimes the XML file can be supplied by manufacturer on a separate disk. Aurora Vision Studio and Aurora Vision Executor use a

special directory for these files which is located in the user data directory. Use this tool to open that directory.

Device description files should be copied into this directory without changing their name, extension and content. File can also be supplied as a ZIP

archive 4 do not decompress such file nor change its extension.

Connecting DevicesConnecting Devices

Connecting a GigE Vision device to a computer means plugging both into the same Ethernet network.

It is recommended that the connection is as simple as possible. To achieve best performance use direct connection with a crossed Ethernet cable or

connect the camera and the computer to the same Ethernet switch (without any other heavy traffic routed through the same switch).

The device and the computer must reside in a single local area network and must be set up for the same subnet.

GigE Vision® is designed for 1 Gb/s networks, but it is also possible to use 100 Mb/s connection as long as the entire network connection have an

uniformed speed (some custom device configuration might be required when the device is not able to detect connection speed automatically). It is

recommended however to avoid connecting a device to a network link which is faster than the maximum throughput of the whole network route. Such

configurations require manual setting of the device's transmission speed limit.

Firewall IssuesFirewall Issues

GigE Vision® protocol produces a specific type of traffic that is not firewall friendly. Typical firewall software is unable to recognize that video

streaming traffic is initialized by a local application and will block this connection. Aurora Vision's GigE driver attempts to overcome this problem

using firewall traversal mechanism, but not all devices support this.

It is thus required to enable incoming traffic on all UDP ports for Aurora Vision Studio and Aurora Vision Executor in a firewall on your local

computer.

https://docs.adaptive-vision.com/5.6/avl/functions/GigEVision/GigEVision_OpenSystemConfiguration.html

For information how to enable such traffic in Windows Firewall see: Enabling Traffic in Firewall.

Configuring IP Address of a DeviceConfiguring IP Address of a Device

In most situations a GigE Vision device is able to automatically obtain an IP address without user action (using DHCP server or automatic local link

address). It is however recommended to set a static IP address for both local network card and device whenever possible. In some cases (e.g. when

preparing the device for operation in an industrial network) it might be required to access and set/change the device's network configuration for a

proper static IP address. Most suitable for this purpose will be a software and a documentation provided by the device manufacturer. When these are

not available Aurora Vision Studio offers universal configuration tools available from the GigE Vision Device Manager (see: Device Manager section).

Packet SizePacket Size

Network video stream is divided into packets of a specified size. The packet size is limited by the Ethernet standard but some network cards support

an extension called jumbo packet that increases allowed packet size. Because a connection is more efficient when the packet size is bigger, the

application will attempt to negotiate biggest possible network packet size for current connection, taking advantage of enabled jumbo packets.

For information how to enable jumbo packets see: Enabling Jumbo Packets

Connecting Multiple Devices to a Single ComputerConnecting Multiple Devices to a Single Computer

It is possible to connect multiple GigEVision cameras to a single computer and to perform image processing based on multiple video streams (e.g.

observing objects from multiple sides), however it can introduce multiple technical challenges that must be considered.

For the best performance it is recommended to connect all devices directly to the computer using multiple gigabit network cards:

In such configuration it is required for the computer hardware to handle concurrent gigabit streams at once. Even when separate network cards are able

to receive the network streams there still may be problems for the computer hardware to transfer data from the network adapters to the system memory.

Attention must be paid when choosing hardware for such applications. When given requirements are not met the system may observe excessive packets loss

leading to the video stream frames loss.

Even when the cameras framerate is low and the resulting average network throughput is relatively low the system still may drop packets duringmay drop packets during

network burstsnetwork bursts when the momentary data transfer exceeds the system capabilities. Such burst may appear when multiple cameras transmit a single frame

at the same time. By default GigEVision camera is transferring a single frame with maximum available speed and lowering framerate is only increasing

the gaps between frame transfers:

Although diagnostic tools will report network throughput utilization to be well below system limits it is still possible for short burst transfers to

temporary exceed the system limits resulting in packets drop. To overcome such problems it is required to not only ensure camera framerates to be

below proper limit, but also to limit the maximum network transfer speed of the device network adapters. Refer to the device documentation for details

about how to limit the network transfer speed in specific device. Usually this can be achieved by decreasing value of parameters such as

DeviceLinkThroughputLimit or StreamBytesPerSecond (in bytes per second), or by introducing delays in between the network packets by increasing

parameters such as PacketDelay, InterPacketDelay or GevSCPD (measured in internal device timer ticks - must be calculated individually for device

using device timer frequency).

Above requirements are especially important when cameras are connected to the computer using a single network card and a shared network switch:

Special care must be taken to assure that all the cameras connected to the switch (when all transmitting at once) do not exceed transfer limits of the

connection between the switch and the computer, both average transfer (by limiting the framerate) as well as temporary burst transfer (by limiting

network transfer speed). Network switch will attempt to handle burst transfers by storing the packets in its internal buffer and transmitting packets

stored in the buffer after the burst, but when the amount of data in burst transfer exceeds the buffer size the network packets will be dropped. Thus

it is required for the switch buffer to be large enough to store all camera frames captured at once, or to limit transmission speed for the switch

buffer to not overflow.

It is important to note that the maximum performance of the multi-camera system with shared network switch is limited by the throughputthe maximum performance of the multi-camera system with shared network switch is limited by the throughput

of the link between the switch and the computerof the link between the switch and the computer, and usually it will not be possible to achieve the maximum framerate and/or resolution of the

cameras.

A common case of using multiple cameras at once is to capture multiple photos of a object from a single trigger source (with synchronous triggering):

https://docs.adaptive-vision.com/5.6/avl/technical_issues/gigevision/EnablingFirewallTraffic.html
https://docs.adaptive-vision.com/5.6/avl/technical_issues/gigevision/DeviceManager.html
https://docs.adaptive-vision.com/5.6/avl/technical_issues/gigevision/EnablingJumboPackets.html

All above recommendations must be considered for such configuration. Because under synchronous triggering all the cameras will always be transferring

images at the same time the problem of momentary burst transfer is especially present. Care must be taken to limit the maximum network transmission

speed in the cameras to the system limits and to give enough time between trigger events for the cameras to finish the transfer.

Enabling Traffic in FirewallEnabling Traffic in Firewall

Standard windows firewall or other active firewall applications should prompt for confirmation on enabling incoming traffic upon first access to the

device. Sample prompt message from standard Windows 7 Firewall is shown on the image bellow.

Please note that a device connected directly to computer's network adaptera device connected directly to computer's network adapter in Windows Vista and Windows 7 will become an element of an

unidentified network. Such device will be treated by default as Public networkPublic network. In order to communicate with such a device you must allow for

traffic also in Public networks as shown on the above image.

Clicking on Allow access will enable application to stream video from a device. Because of a delay caused by the firewall dialog first run of a

program may fail with a timeout error. In such situations just try running program again after enabling access.

For information about changing settings of your firewall application search how to allow a program to communicate through this firewall in a Windows

help or a third party application manual. GigE Vision® driver requires that incoming traffic is enabled on all UDP ports for application.

Enabling Jumbo PacketsEnabling Jumbo Packets

IntroductionIntroduction

Jumbo Packet is an extension of network devices that allows for transmission of packets bigger than 1.5kB. Enabling Jumbo Packets can significantly

increase video streaming performance.

Note that not all network devices support Jumbo Packets. To activate a big packet size, all devices from a network adapter through network routing

equipment to a camera device must support and have enabled big packet sizes. Most suitable situation for using Jumbo Packets is when the device is

connected directly to computer's network adapter with a crossed Ethernet cable.

Do not enable Jumbo Packets when the device is connected through complicated network infrastructure with more that one routing path as maximum allowed

packet sizes detected at application start can change later in the process.

Enabling Jumbo Packets in Windows Vista/7Enabling Jumbo Packets in Windows Vista/7

1. Open network connections applet from the control panel.

2. Right click a network adapter that have a connection with a device and open its properties (an administrator
password may be needed).

3. In network adapter's properties click on Configure.

4. From Advanced tab select Jumbo Packet property and increase its value up to 9014 Bytes (9k Bytes). This step might
look differently depending on the network card vendor. For some vendors this property might have different similar
name (e.g. Large Packet). When there is no property for enabling/setting large packet size this card does not
support jumbo packets.

5. Click OK.

Device Settings EditorDevice Settings Editor

GigE Vision® compliant devices are implementing GenICam standard that describes camera internal parameters and a way how to access them. Device

Manager allows a user to access and edit device settings through a Settings Editor tool (available from Tools » Access Device Settings).

Example appearance of the Device Settings Editor is shown on the image below.

https://docs.adaptive-vision.com/5.6/avl/technical_issues/gigevision/DeviceManager.html

On the left side of the window is a tree representation of device parameters split into categories. All these parameters and their organization is

device dependent, which means that different devices can produce different sets of parameters, with different meanings. Parameter's friendly name and

a brief explanation (also provided by a device) is shown on the right side of the window after the parameter is highlighted in tree. For more

information about specific parameter functions refer to a device documentation.

When editing selected parameter is possible and supported, an editor of the parameter value will be displayed below its explanation. Different editors

are provided for the following parameter types:

IntegerInteger - Plain number or hexadecimal number (indicated by Hex label on the left side of the text box). Values are
limited by their maximum, minimum and allowed step. Numbers that does not fulfill this rules are corrected
automatically upon confirmation. After clicking on Save button (or pressing Enter) new value will be validated and
sent to the device.
FloatFloat - Real number with fractional part. Values are limited by their maximum and minimum. Numbers that do not
match this range are corrected automatically upon confirmation. A parameter can also have suggested step added after
clicking in +/- buttons. After clicking on Save button (or pressing Enter) new value will be validated and sent to
the device.
StringString - Text of a limited length.
BooleanBoolean - Single Yes/No value represented by check box. A value is sent to the device immediately after check state
is changed.
EnumerationEnumeration - Parameter that accepts one of several predefined values. Predefined values are represented as list of
their friendly names. Parameter is edited by choosing one of its values from a drop-down list. New values are sent
to the device immediately after their selection in the list.
CommandCommand - This is a special parameter that is represented only by a single button. Clicking on button will execute
related activity in the device (for example Saving current parameter set to non-volatile memory).

Depending on situation, editor can be disabled (grayed), which means that this parameter is currently locked (for example parameter describing image

format when the camera streaming is active). Editor can be read only (Save button grayed, grayed drop-down list or unchangeable check-box), which

means that this parameter is read-only (for example informational parameters like manufacturer name).

Instead of an editor can there also be a displayed text: "This parameter is currently not available""This parameter is currently not available". This means that the parameter can not be

accessed or edited in the current device state or due to other parameter states. For example parameter describing acquisition frame rate value, when

the user selection of frame rate is disabled (by parameter like Enable Acquisition Framerate).

Sometimes with the parameter editor displayed will be an additional editor, named selector.

In such situation selected parameter is connected with one of categories (slots) described by selector. In the example on the above image, parameter

is determining whether the physical Line is used to Input or Output a signal. This device has two lines and both have its own separate values to

choose from. Selector will pick which line we want to edit and bottommost editor will change it purpose. This means that there are actually two

different Line Modes parameters in device.

Please note that selector will not always be displayed above editor. You must follow a device documentation and search parameters tree for selectors

and other parameters on which this parameter is dependent.

The Device Settings Editor can be used to identify device capabilities and descriptions or to set up a new device. Device Editor can be also used when

a program is running and the camera is streaming. In this situation changes should be immediately visible in the camera output.

Settings Editor gives a user an unlimited access to the device parameters and, when used improperly, can put device in an invalid statewhen used improperly, can put device in an invalid state in

which the device will become inaccessible by applications or can cause transitional errors in the program execution.

Saving Device ConfigurationSaving Device Configuration

Most parameters available in the Settings Editor are stored by devices in a volatile memory and will be lost (reset to default) after device reset or

power down.

A device should offer functions to save parameters set in Configuration Sets section of parameters tree. Refer to a device documentation for more

information about configuration set saving and loading.

Parameter InformationParameter Information

Settings editor can also show information about selected parameter (by switching the tab on right side of the window).

In this mode the window appearance is changed. Instead of editors, on the right side of the window displayed are useful informations for a program

developer, including:

NameName - parameter internal name. Note that parameter tree and descriptions are using human friendly name, not
parameter ID. This field shows a proper parameter ID that must be used in parameter get/set functions.
TypeType - parameter type name. This type must be consistent with the filter value type.
AccessAccess - allowed access to parameter. Parameter must be writable to be set by program.
RangeRange - for numeric parameters this field shows the allowed range. Range of some parameters can change dynamically
during its operation.
Value cacheValue cache - when GenAPI cache is enabled this field indicates if device allows to store this parameter value in
local memory to reduce network operations.
Access cacheAccess cache - when GenAPI cache is enabled this field indicates if device allows to store access mode of this
parameter in local memory to reduce network operations on controlling parameter accessibility.
Available entriesAvailable entries - for enumeration parameters this field will list currently available values for a parameter.
The field shows proper internal IDs that should be used when setting the parameter (note that editor's drop-down
lists are using human friendly names).

Known IssuesKnown Issues

In this section you will find solutions to known issues that we have came across while testing communication between Aurora Vision products and

different camera models through GigE Vision.

Table of ContentsTable of Contents

1. The Imaging Source cameras
2. Flir cameras
3. Basic Troubleshooting

The Imaging Source camerasThe Imaging Source cameras

There might be problems with image acquisition from The Imaging Source cameras through GigE. It's caused by the implementation (regarding caching and

packet size) of GigE Vision standard in those cameras and as a result no image can be seen in Aurora Vision Studio (the previews are empty during

program execution).

To resolve this issue, a camera restart (this has to be done only once, after you encounter the problem with image acquisition) and changing some

parameters in Aurora Vision GenAPI configuration are required. Parameters which should be changed are:

Enable GenAPI Cache (should be set to False),
Disable Packet Size Negotiation (should be set to True),
Enable Constant Packet Size (should be set to False).

In order to change these parameters, you should (before opening device connection) open library configuration with function

GigEVision_OpenSystemConfiguration, and set the following parameters (please note that these parameters have to be set separately for each

application)by using GenApi function:

GevAppTLEnableGenApiCache (Boolean) to False
GevAppTLDisablePacketSizeNegotiation (Boolean) to True
GevAppTLEnableConstantPacketSize (Boolean) to False

https://docs.adaptive-vision.com/5.6/avl/functions/GigEVision/GigEVision_OpenSystemConfiguration.html

Basic TroubleshootingBasic Troubleshooting

If a GigEVision device is connected, but the image cannot be acquired, please follow the steps below.

1. If the camera settings have been changed, set the default value for each changed parameter.
2. Check if there is no other software that uses the camera in the background. If there is, close it.
3. Check the camera connection. Connect the device directly to the PC if possible. If not, simplify the connection as

much as possible. If there is any managed switch, check its settings.
4. If possible, use stable power supply (not PoE).
5. Set static IP address for both the camera and the PC. More information can be found here.
6. Enable Traffic in Firewall. More information can be found here.
7. Turn off Third-party Network Card Drivers.

8. Enable Jumbo Packets. More information can be found here.
9. Update PC Network Card Driver.

If after following all the steps the issue still appears, open GigE Vision Device Manager, right-click on the issued camera, choose Save DeviceSave Device

Diagnostic to FileDiagnostic to File, and send the created file to the Technical Support Team.

https://docs.adaptive-vision.com/5.6/avl/gigevision/DeviceManager.html
https://docs.adaptive-vision.com/5.6/avl/gigevision/EnablingFirewallTraffic.html
https://docs.adaptive-vision.com/5.6/avl/gigevision/EnablingJumboPackets.html
https://docs.adaptive-vision.com/5.6/avl/gigevision/DeviceManager.html
mailto:av-support@zebra.com

5. Machine Vision Guide5. Machine Vision Guide

Table of content:

Image Processing
Blob Analysis
1D Edge Detection
1D Edge Detection 3 Subpixel Precision
Shape Fitting
Template Matching
Using Local Coordinate Systems
Camera Calibration and World Coordinates
Golden Template

Image ProcessingImage Processing

IntroductionIntroduction

There are two major goals of Image Processing techniques:

1. To enhance an image for better human perception
2. To make the information it contains more salient or easier to extract

It should be kept in mind that in the context of computer vision only the second point is important. Preparing images for human perception is not part

of computer vision; it is only part of information visualization. In typical machine vision applications this comes only at the end of the program and

usually does not pose any problem.

The first and the most important advice for machine vision engineers is: avoid image transformations designed for human perception when theavoid image transformations designed for human perception when the

goal is to extract informationgoal is to extract information. Most notable examples of transformations that are not only not interesting, but can even be highly disruptive,

are:

JPEG compression (creates artifacts not visible by human eye, but disruptive for algorithms)
CIE Lab and CIE XYZ color spaces (specifically designed for human perception)
Edge enhancement filters (which improve only the "apparent sharpness")
Image thresholding performed before edge detection (precludes sub-pixel precision)

Examples of image processing operations that can really improve information extraction are:

Gaussian image smoothing (removes noise, while preserving information about local features)
Image morphology (can remove unwanted details)
Gradient and high-pass filters (highlight information about object contours)
Basic color space transformations like HSV (separate information about chromaticity and brightness)
Pixel-by-pixel image composition (e.g. can highlight image differences in relation to a reference image)

Regions of InterestRegions of Interest

The image processing tools provided by Aurora Vision have a special inRoi input (of Region type), that can limit the spatial scope of the operation.

The region can be of any shape.

Remarks:

The output image will be black outside of the inRoi region.
To obtain an image that has its pixels modified in inRoi and copied outside of it, one can use the ComposeImages
filter.
The default value for inRoi is Auto and causes the entire image to be processed.
Although inRoi can be used to significantly speed up processing, it should be used with care. The performance gain
may be far from proportional to the inRoi area, especially in comparison to processing the entire image (Auto). This
is due to the fact, that in many cases more SSE optimizations are possible when inRoi is not used.

Some filters have a second region of interest called inSourceRoi. While inRoi defines the range of pixels that will be written in the output image,

the inSourceRoi parameter defines the range of pixels that can be read from the input image.

Image Boundary ProcessingImage Boundary Processing

Some image processing filters, especially those from the Image Local Transforms category, use information from some local neighborhood of a pixel.

This causes a problem near the image borders as not all input data is available. The policy applied in our tools is:

Never assume any specific value outside of the image, unless specifically defined by the user.
If only partial information is available, it is better not to detect anything, than detect something that does not
exist.

In particular, the filters that use information from a local neighborhood just use smaller (cropped) neighbourhood near the image borders. This is

something, however, that has to be taken into account, when relying on the results 3 for example results of the smoothing filters can be up to 2 times

less smooth at the image borders (due to half of the neighborhood size), whereas results of the morphological filters may "stick" to the image

borders. If the highest reliability is required, the general rule is: use appropriate regions of interest to ignore image processing resultsuse appropriate regions of interest to ignore image processing results

that come from incomplete informationthat come from incomplete information (near the image borders).

ToolsetToolset

Image CombinatorsImage Combinators

The filters from the Image Combinators category take two images and perform a pixel-by-pixel transformation into a single image. This can be used for

example to highlight differences between images or to normalize brightness 3 as in the example below:

An input image and the inRoi. Result of an operation performed within inRoi.

https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageCombinators/ComposeImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageCombinators/index.html

Image SmoothingImage Smoothing

The main purpose of the image smoothing filters (located in the Image Local Transforms category) is removal of noise. There are several different ways

to perform this task with different trade-offs. On the example below three methods are presented:

1. Mean smoothing 3 simply takes the average pixel value from a rectangular neighborhood; it is the fastest method.
2. Median smoothing 3 simply takes the median pixel value from a rectangular neighborhood; preserves edges, but is

relatively slow.
3. Gauss smoothing 3 computes a weighted average of the pixel values with Gaussian coefficients as the weights; its

advantage is isotropy and reasonable speed for small kernels.

Image MorphologyImage Morphology

Basic morphological operators 3 DilateImage and ErodeImage 3 transform the input image by choosing maximum or minimum pixel values from a local

neighborhood. Other morphological operators combine these two basic operations to perform more complex tasks. Here is an example of using the

OpenImage filter to remove salt and pepper noise from an image:

Gradient AnalysisGradient Analysis

An image gradient is a vector describing direction and magnitude (strength) of local brightness changes. Gradients are used inside of many computer

vision tools 3 for example in object contour detection, edge-based template matching and in barcode and DataMatrix detection.

Available filters:

GradientImage 3 produces a 2-channel image of signed values; each pixel denotes a gradient vector.
GradientMagnitudeImage 3 produces a single channel image of gradient magnitudes, i.e. the lengths of the vectors (or
their approximations).
GradientDirAndPresenceImage 3 produces a single channel image of gradient directions mapped into the range from 1 to
255; 0 means no significant gradient.

Input image with high

reflections.

Image of the reflections

(calibrating).

The result of applying DivideImages with inScale = 128 (inRoi was

used).

Input image with some noise. Result of applying SmoothImage_Mean. Result of applying SmoothImage_Gauss. Result of applying SmoothImage_Median.

Input image with salt-and-pepper noise. Result of applying OpenImage.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageCombinators/DivideImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Mean.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/DilateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/OpenImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/OpenImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientDirAndPresenceImage.html

Spatial TransformsSpatial Transforms

Spatial transforms modify an image by changing locations, but not values, of pixels. Here are sample results of some of the most basic operations:

There are also interesting spatial transform tools that allow to transform a two dimensional vision problem into a 1.5-dimensional one, which can be

very useful for further processing:

An input image and a path.

Result of ImageAlongPath.

Spatial Transform MapsSpatial Transform Maps

The spatial transform tools perform a task that consist of two steps for each pixel:

1. compute the destination coordinates (and some coefficients when interpolation is used),
2. copy the pixel value.

In many cases the transformation is constant 3 for example we might be rotating an image always by the same angle. In such cases the first step 3

computing the coordinates and coefficients 3 can be done once, before the main loop of the program. Aurora Vision provides the Image Spatial

Transforms Maps category of filters for exactly that purpose. When you are able to compute the transform beforehand, storing it in the SpatialMap

type, in the main loop only the RemapImage filter has to be executed. This approach will be much faster than using standard spatial transform tools.

The SpatialMap type is a map of image locations and their corresponding positions after given geometric transformation has been applied.

An input image. Result of GradientMagnitudeImage.

Result of GradientDirAndPresenceImage. Diagnostic output of GradientImage showing hue-coded directions.

Result of MirrorImage. Result of RotateImage. Result of ShearImage.
Result of DownsampleImage.

Result of TransposeImage. Result of TranslateImage. Result of CropImage. Result of UncropImage applied to the result of CropImage.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientDirAndPresenceImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/MirrorImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/RotateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/ShearImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/DownsampleImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/TransposeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/TranslateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/UncropImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/ImageAlongPath.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/index.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/SpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/RemapImage.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/SpatialMap.html

Additionally, the Image Spatial Transforms Maps category provides several filters that can be used to flatten the curvature of a physical object. They

can be used for e.g. reading labels glued onto curved surfaces. These filters model basic 3D objects:

1. CylinderCylinder (CreateCylinderMap) 3 e.g. flattening of a bottle label.
2. SphereSphere (CreateSphereMap) 3 e.g. reading a label from light bulb.
3. BoxBox (CreatePerspectiveMap_Points or CreatePerspectiveMap_Path) 3 e.g. reading a label from a box.
4. Circular objects (polar transform)Circular objects (polar transform) (CreateImagePolarTransformMap) - e.g. reading a label wrapped around a DVD

disk center.

Example of remapping of a spherical object using CreateSphereMap and RemapImage. Image before and after remapping.

Furthermore custom spatial maps can be created with ConvertMatrixMapsToSpatialMap.

An example of custom image transform created with ConvertMatrixMapsToSpatialMap. Image before and after remapping.

Image ThresholdingImage Thresholding

The task of Image Thresholding filters is to classify image pixel values as foreground (white) or background (black). The basic filters ThresholdImage

and ThresholdToRegion use just a simple range of pixel values 3 a pixel value is classified as foreground iff it belongs to the range. The

ThresholdImage filter just transforms an image into another image, whereas the ThresholdToRegion filter creates a region corresponding to the

foreground pixels. Other available filters allow more advanced classification:

ThresholdImage_Dynamic and ThresholdToRegion_Dynamic use average local brightness to compensate global illumination
variations.
ThresholdImage_RGB and ThresholdToRegion_RGB select pixel values matching a range defined in the RGB (the standard)
color space.
ThresholdImage_HSx and ThresholdToRegion_HSx select pixel values matching a range defined in the HSx color space.
ThresholdImage_Relative and ThresholdToRegion_Relative allow to use a different threshold value at each pixel
location.

There is also an additional filter SelectThresholdValue which implements a number of methods for automatic threshold value selection. It should,

however, be used with much care, because there is no universal method that works in all cases and even a method that works well for a particular case

might fail in special cases.

Image Pixel AnalysisImage Pixel Analysis

When reliable object detection by color analysis is required, there are two filters that can be useful: ColorDistance and ColorDistanceImage. These

filters compare colors in the RGB space, but internally separate analysis of brightness and chromaticity. This separation is very important, because

in many cases variations in brightness are much higher than variations in chromaticity. Assigning more significance to the latter (high value of the

inChromaAmount input) allows to detect areas having the specified color even in presence of highly uneven illumination:

Input image with uneven light. Result of ThresholdImage 3 the bars can not be

recognized.

Result of ThresholdImage_Dynamic 3 the bars are

correct.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateCylinderMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreatePerspectiveMap_Points.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreatePerspectiveMap_Path.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateImagePolarTransformMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/RemapImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_Relative.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/SelectThresholdValue.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ColorDistance.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ColorDistanceImage.html

Image FeaturesImage Features

Image Features is a category of image processing tools that are already very close to computer vision 3 they transform pixel information into simple

higher-level data structures. Most notable examples are: ImageLocalMaxima which finds the points at which the brightness is locally the highest,

ImageProjection which creates a profile from sums of pixel values in columns or in rows, ImageAverage which averages pixel values in the entire region

of interest. Here is an example application:

Blob AnalysisBlob Analysis

IntroductionIntroduction

Blob Analysis is a fundamental technique of machine vision based on analysis of consistent image regions. As

such it is a tool of choice for applications in which the objects being inspected are clearly discernible from

the background. Diverse set of Blob Analysis methods allows to create tailored solutions for a wide range of

visual inspection problems.

Main advantages of this technique include high flexibility and excellent performance. Its limitations are:

clear background-foreground relation requirement (see Template Matching for an alternative) and pixel-precision

(see 1D Edge Detection for an alternative).

ConceptConcept

Let us begin by defining the notions of region and blob.

Region is any subset of image pixels. In Aurora Vision Studio regions are represented using Region data type.
Blob is a connected region. In Aurora Vision Studio blobs (being a special case of region) are represented using the
same Region data type. They can be obtained from any region using a single SplitRegionIntoBlobs filter or (less
frequently) directly from an image using image segmentation filters from category Image Analysis techniques.

The basic scenario of the Blob Analysis solution consists of the following steps:

1. ExtractionExtraction - in the initial step one of the Image Thresholding techniques is applied to obtain a region
corresponding to the objects (or single object) being inspected.

2. RefinementRefinement - the extracted region is often flawed by noise of various kind (e.g. due to inconsistent lightning or
poor image quality). In the Refinement step the region is enhanced using region transformation techniques.

3. AnalysisAnalysis - in the final step the refined region is subject to measurements and the final results are computed. If
the region represents multiple objects, it is split into individual blobs each of which is inspected separately.

ExamplesExamples

The following examples illustrate the general schema of Blob Analysis algorithms. Each of the techniques represented in the examples (thresholding,

morphology, calculation of region features, etc.) is inspected in detail in later sections.

Input image with uneven light. Result of ColorDistanceImage for the red color with inChromaAmount

= 1.0. Dark areas correspond to low color distance.

Result of thresholding reveals the

location of the red dots on the globe.

Input image with digits to be segmented. Result of preprocessing with CloseImage.

Digit locations extracted by applying SmoothImage_Gauss and

ImageLocalMaxima.

Profile of the vertical projection revealing regions of digits and the

boundaries between them.

An example image. Region of pixels darker than 128. Decomposition of the region into array of blobs.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ColorDistanceImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageLocalMaxima.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageProjection.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePixelStatistics/ImageAverage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/CloseImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageLocalMaxima.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/index.html

Rubber BandRubber Band

MountsMounts

In this, idealized, example we analyze a picture of an electronic device wrapped in a

rubber band. The aim here is to compute the area of the visible part of the band (e.g.

to decide whether it was assembled correctly).

In this case each of the steps: Extraction, Refinement and Analysis is represented by

a single filter.

ExtractionExtraction - to obtain a region corresponding to the red band a Color-based

Thresholding technique is applied. The ThresholdToRegion_HSx filter is capable of

finding the region of pixels of given color characteristics - in this case it is

targeted to detect red pixels.

RefinementRefinement - the problem of filling the gaps in the extracted region is a standard

one. Classic solutions for it are the region morphology techniques. Here, the

CloseRegion filter is used to fill the gaps.

AnalysisAnalysis - finally, a single RegionArea filter is used to compute the area of the

obtained region.

Initial imageInitial image

ExtractionExtraction

RefinementRefinement

ResultsResults

In this example a picture of a set of mounts is inspected to identify the damaged

ones.

ExtractionExtraction - as the lightning in the image is uniform, the objects are consistently

dark and the background is consistently bright, the extraction of the region

corresponding to the objects is a simple task. A basic ThresholdToRegion filter does

the job, and does it so well that no RefinementRefinement phase is needed in this example.

AnalysisAnalysis - as we need to analyze each of the blobs separately, we start by applying

the SplitRegionIntoBlobs filter to the extracted region.

To distinguish the bad parts from the correct parts we need to pick a property of a

region (e.g. area, circularity, etc.) that we expect to be high for the good parts and

low for the bad parts (or conversely). Here, the area would do, but we will pick a

somewhat more sophisticated rectangularity feature, which will compute the similarity-

to-rectangle factor for each of the blobs.

Once we have chosen the rectangularity feature of the blobs, all that needs to be done

is to feed the regions to be classified to the ClassifyRegions filter (and to set its

inMinimuminMinimum value parameter). The blobs of too low rectangularity are available at the

outRejectedoutRejected output of the classifying filter.

Input imageInput image

ExtractionExtraction

AnalysisAnalysis

ResultsResults

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/CloseRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionArea.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionRelations/ClassifyRegions.html

ExtractionExtraction

There are two techniques that allow to extract regions from an image:

Image ThresholdingImage Thresholding - commonly used methods that compute a region as a set of pixels that meet certain condition
dependent on the specific operator (e.g. region of pixels brighter than given value, or brighter than the average
brightness in their neighborhood). Note that the resulting data is always a single region, possibly representing
numerous objects.
Image SegmentationImage Segmentation - more specialized set of methods that compute a set of blobs corresponding to areas in the
image that meet certain condition. The resulting data is always an array of connected regions (blobs).

ThresholdingThresholding

Image Thresholding techniques are preferred for common applications (even those in which a set of objects is inspected rather than a single object)

because of their simplicity and excellent performance. In Aurora Vision Studio there are six filters for image-to-region thresholding, each of them

implementing a different thresholding method.

Classic ThresholdingClassic Thresholding

ThresholdToRegion simply selects the image pixels of the specified brightness. It should be considered a basic tool and applied whenever the intensity

of the inspected object is constant, consistent and clearly different from the intensity of the background.

Dynamic ThresholdingDynamic Thresholding

Inconsistent brightness of the objects being inspected is a common problem usually caused by the imperfections of the lightning setup. As we can see

in the example below, it is often the case that the objects in one part of the image actually have the same brightness as the background in another

part of the image. In such case it is not possible to use the basic ThresholdToRegion filter and ThresholdToRegion_Dynamic should be considered

instead. The latter selects image pixels that are locally bright/dark. Specifically - the filter selects the image pixels of the given relative local

brightness defined as the difference between the pixel intensity and the average intensity in its neighborhood.

Color-based ThresholdingColor-based Thresholding

When inspection is conducted on color images it may be the case that despite a significant difference in color, the brightness of the objects is

actually the same as the brightness of their neighborhood. In such case it is advisable to use Color-based Thresholding filters:

ThresholdToRegion_RGB, ThresholdToRegion_HSx. The suffix denote the color space in which we define the desired pixel characteristic and not the space

used in the image representation. In other words - both of these filters can be used to process standard RGB color image.

RefinementRefinement

Brightness-Brightness-
based based
(basic)(basic)

Brightness-Brightness-
based based

(additional)(additional)

Color-basedColor-based

An example image. Mono equivalent of the image depicting brightness of

its pixels.

Result of the color-based thresholding targeted at

red pixels.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html

Region MorphologyRegion Morphology

Region Morphology is a classic technique of region transformation. The core concept of this toolset is the usage of a structuring element also known

as the kernel. The kernel is a relatively small shape that is repeatedly centered at each pixel within dimensions of the region that is being

transformed. Every such pixel is either added to the resulting region or not, depending on operation-specific condition on the minimum number of

kernel pixels that have to overlap with actual input region pixels (in the given position of the kernel). See description of DilationDilation for an example.

Dilation and ErosionDilation and Erosion

DilationDilation is one of two basic morphological transformations. Here each pixel PP within the dimensions of the region being transformed is added to the

resulting region if and only if the structuring element centered at PP overlaps with at least one pixel that belongs to the input region. Note that for

a circular kernel such transformation is equivalent to a uniform expansion of the region in every direction.

ErosionErosion is a dual operation of DilationDilation. Here, each pixel PP within the dimensions of the region being transformed is added to the resulting region

if and only if the structuring element centered at PP is fully contained in the region pixels. Note that for a circular kernel such transformation is

equivalent to a uniform reduction of the region in every direction.

Closing and OpeningClosing and Opening

The actual power of the Region MorphologyRegion Morphology lies in its composite operators - ClosingClosing and OpeningOpening. As we may have recently noticed, during the blind

region expansion performed by the DilationDilation operator, the gaps in the transformed region are filled in. Unfortunately, the expanded region no longer

corresponds to the objects being inspected. However, we can apply the ErosionErosion operator to bring the expanded region back to its original boundaries.

The key point is that the gaps that were completely filled during the dilation will stay filled after the erosion. The operation of applying ErosionErosion

to the result of DilationDilation of the region is called ClosingClosing, and is a tool of choice for the task of filling the gaps in the extracted region.

OpeningOpening is a dual operation of ClosingClosing. Here, the region being transformed is initially eroded and then dilated. The resulting region preserves the

form of the initial region, with the exception of thin/small parts, that are removed during the process. Therefore, OpeningOpening is a tool for removing

the thin/outlying parts from a region. We may note that in the example below, the OpeningOpening does the - otherwise relatively complicated - job of

finding the segment of the rubber band of excessive width.

Other Refinement MethodsOther Refinement Methods

AnalysisAnalysis

Once we obtain the region that corresponds to the object or the objects being inspected, we may commence the analysis - that is, extract the

information we are interested in.

Region FeaturesRegion Features

Aurora Vision Studio allows to compute a wide range of numeric (e.g. area) and non-numeric (e.g. bounding circle) region features. Calculation of the

measures describing the obtained region is often the very aim of applying the blob analysis in the first place. If we are to check whether the

rectangular packaging box is deformed or not, we may be interested in calculating the rectangularity factor of the packaging region. If we are to

check if the chocolate coating on a biscuit is broad enough, we may want to know the area of the coating region.

It is important to remember, that when the obtained region corresponds to multiple image objects (and we want to inspect each of them separately), we

should apply the SplitRegionIntoBlobs filter before performing the calculation of features.

ExpandingExpanding ReducingReducing

BasicBasic

CompositeComposite

https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html

Numeric FeaturesNumeric Features

Each of the following filters computes a number that expresses a specific property of the region shape.

Annotations in brackets indicate the range of the resulting values.

Non-numeric FeaturesNon-numeric Features

Each of the following filters computes an object related to the shape of the region. Note that the primitives extracted using these filters can be

made subject of further analysis. For instance, we can extract the holes of the region using the RegionHoles filter and then measure their areas using

the RegionArea filter.

Annotations in brackets indicate Aurora Vision Studio's type of the result.

Case StudiesCase Studies

CapsulesCapsules

In this example we inspect a set of washing machine capsules on a conveyor line. Our aim is to identify the deformed capsules.

We will proceed in two steps: we will commence by designing a simple program that, given picture of the conveyor line, will be able to identify the

region corresponding to the capsule(s) in the picture. In the second step we will use this program as a building block of the complete solution.

Size of the region (0 -) Similarity to a circle (0.0 - 1.0)

Similarity to own convex hull (0.0 - 1.0) Similarity to a rectangle (0.0 - 1.0)

Similarity to a line (0.0 -) Moments of the region (0.0 -)

Count of the region holes (0 -) Orientation of the main region axis (0.0 - 180.0)

Length of the region contour (0.0 -)

Smallest axis-aligned rectangle containing the region (Box) Smallest circle containing the region (Circle2D)

Smallest any-orientation rectangle containing the region (Rectangle2D) Boundaries of the region (PathArray)

Longest segment connecting two points inside the region (Segment2D) Array of blobs representing gaps in the region (RegionArray)

Skeleton of the region (PathArray)

https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionArea.html

FindRegion RoutineFindRegion Routine

Our routine for ExtractionExtraction and RefinementRefinement of the region is ready. As it constitutes a continuous block of filters performing a well defined task,

it is advisable to encapsulate the routine inside a function to enhance the readability of the soon-to-be-growing program.

In this section we will develop a program that will be responsible for the ExtractionExtraction

and RefinementRefinement phases of the final solution. For brevity of presentation in this part we

will limit the input image to its initial segment.

After a brief inspection of the input image we may note that the task at hand will not be

trivial - the average brightness of the capsule body is similar to the intensity of the

background. On the other hand the border of the capsule is consistently darker than the

background. As it is the border of the object that bears significant information about

its shape we may use the basic ThresholdToRegion filter to extract the darkest pixels of

the image with the intention of filling the extracted capsule border during further

refinement.

The extracted region certainly requires such refinement - actually, there are two issues

that need to be addressed. We need to fill the shape of the capsule and eliminate the

thin horizontal stripes corresponding to the elements of the conveyor line setup.

Fortunately, there are fairly straightforward solutions for both of these problems.

FillRegionHoles will extend the region to include all pixels enclosed by present region

pixels. After the region is filled all that remains is the removal of the thin conveyor

lines using the classic OpenRegion filter.

Initial imageInitial image

ThresholdToRegionThresholdToRegion

FillRegionHolesFillRegionHoles

OpenRegionOpenRegion

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/FillRegionHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/OpenRegion.html

Complete SolutionComplete Solution

Our program right now is capable of extracting the region

that directly corresponds to the capsules visible in the

image. What remains is to inspect each capsule and classify

it as a correct or deformed one.

As we want to analyze each capsule separately, we should

start with decomposition of the extracted region into an

array of connected components (blobs). This common operation

can be performed using the straightforward

SplitRegionIntoBlobs filter.

We are approaching the crucial part of our solution - how are

we going to distinguish correct capsules from deformed ones?

At this stage it is advisable to have a look at the summary

of numeric region features provided in AnalysisAnalysis section. If

we could find a numeric region property that is correlated

with the nature of the problem at hand (e.g. it takes low

values for a correct capsules and high values for a deformed

one, or conversely), we would be nearly done.

Rectangularity of a shape is defined as the ratio between its

area and area of its smallest enclosing rectangle - the

higher the value, the more the shape of the object resembles

a rectangle. As the shape of a correct capsule is almost rectangular (it is a rectangle with rounded corners) and clearly more rectangular than the

shape of deformed capsule, we may consider using rectangularity feature to classify the capsules.

Having selected the numeric feature that will be used for the classification, we are ready to add the ClassifyRegions filter to our program and feed

it with data. We pass the array of capsule blobs on its inRegionsinRegions input and we select Rectangularity on the inFeatureinFeature input. After brief interactive

experimentation with the inMinimum threshold we may observe that setting the minimum rectangularity to 0.95 allows proper discrimination of correct

(available at outAcceptedoutAccepted) and deformed (outRejectedoutRejected) capsule blobs.

Region extracted by the FindRegion routine.

https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionRelations/ClassifyRegions.html

Decomposition of the region into individual blobs.

Blobs of low rectangularity selected by ClassifyRegions filter.

1D Edge Detection1D Edge Detection

IntroductionIntroduction

1D Edge Detection (also called 1D Measurement) is a classic technique of machine vision where the information

about image is extracted from one-dimensional profiles of image brightness. As we will see, it can be used for

measurements as well as for positioning of the inspected objects.

Main advantages of this technique include sub-pixel precision and high performance.

ConceptConcept

The 1D Edge Detection technique is based on an observation that any edge in the image corresponds to a rapid brightness change in the direction

perpendicular to that edge. Therefore, to detect the image edges we can scan the image along a path and look for the places of significant change of

intensity in the extracted brightness profile.

The computation proceeds in the following steps:

1. Profile extractionProfile extraction 3 firstly the profile of brightness along the given path is extracted. Usually the profile is
smoothed to remove the noise.

2. Edge extractionEdge extraction 3 the points of significant change of profile brightness are identified as edge points 3 points
where perpendicular edges intersect the scan line.

3. Post-processingPost-processing 3 the final results are computed using one of the available methods. For instance ScanSingleEdge
filter will select and return the strongest of the extracted edges, while ScanMultipleEdges filter will return all
of them.

ExampleExample

The image is scanned along the path and the brightness profile is extracted and smoothed.

Brightness profile is differentiated. Notice four peaks of the profile derivative which correspond to four prominent image edges intersecting the scan

line. Finally the peaks stronger than some selected value (here minimal strength is set to 5) are identified as edge points.

Filter ToolsetFilter Toolset

Basic toolset for the 1D Edge Detection-based techniques scanning for edges consists of 9 filters each of which runs a single scan along the given

path (inScanPathinScanPath). The filters differ on the structure of interest (edges / ridges / stripes (edge pairs)) and its cardinality (one / any fixed

number / unknown number).

https://docs.adaptive-vision.com/5.6/avl/functions/RegionRelations/ClassifyRegions.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleEdges.html

Note that in Aurora Vision Library there is the CreateScanMapCreateScanMap function that has to be used before a usage of any other 1D Edge Detection function.

The special function creates a scan map, which is passed as an input to other functions considerably speeding up the computations.

ParametersParameters

Profile ExtractionProfile Extraction

In each of the nine filters the brightness profile is extracted in exactly the same way. The stripe of pixels

along inScanPathinScanPath of width inScanWidthinScanWidth is traversed and the pixel values across the path are accumulated to

form one-dimensional profile. In the picture on the right the stripe of processed pixels is marked in orange,

while inScanPathinScanPath is marked in red.

The extracted profile is smoothed using Gaussian smoothing with standard deviation of inSmoothingStdDevinSmoothingStdDev. This

parameter is important for the robustness of the computation - we should pick the value that is high enough to

eliminate noise that could introduce false / irrelevant extrema to the profile derivative, but low enough to

preserve the actual edges we are to detect.

The inSmoothingStdDevinSmoothingStdDev parameter should be adjusted through interactive experimentation using outBrightnessProfileoutBrightnessProfile output, as demonstrated below.

EdgesEdges

Single ResultSingle Result

Multiple ResultsMultiple Results

Fixed Number ofFixed Number of
ResultsResults

StripesStripes

Single ResultSingle Result

Multiple ResultsMultiple Results

Fixed Number ofFixed Number of
ResultsResults

RidgesRidges

Single ResultSingle Result

Multiple ResultsMultiple Results

Fixed Number ofFixed Number of
ResultsResults

Edge ExtractionEdge Extraction

After the brightness profile is extracted and refined, the derivative of the profile is computed and its local

extrema of magnitude at least inMinMagnitudeinMinMagnitude are identified as edge points. The inMinMagnitudeinMinMagnitude parameter

should be adjusted using the outResponseProfileoutResponseProfile output.

The picture on the right depicts an example outResponseProfileoutResponseProfile profile. In this case the significant extrema

vary in magnitude from 11 to 13, while the magnitude of other extrema is lower than 3. Therefore any

inMinMagnitudeinMinMagnitude value in range (4, 10) would be appropriate.

Edge TransitionEdge Transition

Filters being discussed are capable of filtering the edges depending on the kind of transition they represent - that is, depending on whether the

intensity changes from bright to dark, or from dark to bright. The filters detecting individual edges apply the same condition defined using the

inTransitioninTransition parameter to each edge (possible choices are bright-to-dark, dark-to-bright and any).

Stripe IntensityStripe Intensity

The filters detecting stripes expect the edges to alternate in their characteristics. The parameter inIntensityinIntensity defines whether each stripe should

bound the area that is brighter, or darker than the surrounding space.

Case Study: BladesCase Study: Blades

Assume we want to count the blades of a circular saw from

the picture.

We will solve this problem running a single 1D Edge

Detection scan along a circular path intersecting the

blades, and therefore we need to produce appropriate

circular path. For that we will use a straightforward

CreateCirclePath filter. The built-in editor will allow us

to point & click the required inCircleinCircle parameter.

The next step will be to pick a suitable measuring filter.

Because the path will alternate between dark blades and

white background, we will use a filter that is capable of

measuring stripes. As we do not now how many blades there

are on the image (that is what we need to compute), the

ScanMultipleStripes filter will be a perfect choice.

We expect the measuring filter to identify each blade as a

single stripe (or each space between blades, depending on

our selection of inIntensityinIntensity), therefore all we need to do

to compute the number of blades is to read the value of the

outStripes.CountoutStripes.Count property output of the measuring filter.

Too low inSmoothingStdDevinSmoothingStdDev - too

much noise

Appropriate inSmoothingStdDevinSmoothingStdDev - low noise, significant

edges are preserved

Too high inSmoothingStdDevinSmoothingStdDev - significant

edges are attenuated

inTransitioninTransition = Any inTransitioninTransition = BrightToDark inTransitioninTransition = DarkToBright

inIntensityinIntensity = Dark inIntensityinIntensity = Bright

https://docs.adaptive-vision.com/5.6/avl/functions/PathBasics/CreateCirclePath.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleStripes.html

The program solves the problem as expected (perhaps after increasing the inSmoothingStdDevinSmoothingStdDev from default of 0.6 to bigger value of 1.0 or 2.0) and

detects all 30 blades of the saw.

1D Edge Detection 3 Subpixel Precision1D Edge Detection 3 Subpixel Precision

IntroductionIntroduction

One of the key strengths of the 1D Edge Detection tools is their ability do detect edges with precision higher than the pixel grid. This is possible,

because the values of the derivative profile (of pixel values) can be interpolated and its maxima can be found analytically.

Example: Parabola FittingExample: Parabola Fitting

Let us consider a sample profile of pixel values corresponding to an edge (red):

Sample edge profile (red) and its derivative (green). Please note, that the derivative is shifted by 0.5.

The steepest segment is between points 4.0 and 5.0, which corresponds to the maximum of the derivative (green) at 4.5. Without the subpixel precision

the edge would be found at this point.

It is, however, possible to consider information about the values of the neighbouring profile points to extract the edge location with higher

precision. The simplest method is to fit a parabola to three consecutive points of the derivative profile:

Fitting a parabola to three consecutive points.

Now, the edge point we are looking for can be taken from the maximum of the parabola. In this case it will be 4.363, which is already a subpixel-

precise result. This precision is still not very high, however. We know it from an experiment 3 this particular profile, which we are considering in

this example, has been created from a perfect gaussian edge located at the point 430 and downsampled 100 times to simulate a camera looking at an edge

at the point 4.3. The error that we got, is 0.063 px. From other experiments we know that in the worst case it can be up to 1/6 px.

Advanced: Methods Available in Aurora VisionAdvanced: Methods Available in Aurora Vision

More advanced methods can be used that consider not three, but four consecutive points and which employ additional techniques to assure the highest

precision in presence of noise and other practical edge distortions. In Aurora Vision Studio they are available in a form of 3 different profile

interpolation methods:

Linear 3 the simplest method that results in pixel-precise results,
Quadratic3 3 an improved fitting of parabola to 3 consecutive points,

Quadratic4 3 an advanced method that fits parabola to 4 consecutive points.

The precision of these methods on perfect gaussian edges is respectively: 1/2 px, 1/6 px and 1/23 px. It has to be added, however, that the Quadratic4

method differs significantly in its performance on edges which are only slightly blurred 3 when the image quality is close to perfect, the precision

can be even higher than 1/50 px.

Shape FittingShape Fitting

IntroductionIntroduction

Shape Fitting is a machine vision technique that allows for precise detection of objects whose shapes and rough

positions are known in advance. It is most often used in measurement applications for establishing line

segments, circles, arcs and paths defining the shape that is to be measured.

As this technique is derived from 1D Edge Detection, its key advantages are similar 3 including sub-pixel

precision and high performance.

ConceptConcept

The main idea standing behind Shape Fitting is that a continuous object (such as a circle, an arc or a segment) can be determined using a finite set

of points belonging to it. These points are computed by means of appropriate 1D Edge Detection filters and are then combined together into a single

higher-level result.

Thus, a single Shape Fitting filter's work consists of the following steps:

1. Scan segments preparationScan segments preparation 3 a series of segments is prepared. The number, length and orientations of the segments
are computed from the filter's parameters.

2. Points extractionPoints extraction 3 points that should belong to the object being fitted are extracted using (internally) a proper
1D Edge Detection filter (e.g. ScanSingleEdge in FitCircleToEdges) along each of the scan segments as the scan path.

3. Object fittingObject fitting 3 the final result is computed with the use of a technique that allows fitting an object to a set
of points. In this step, a filter from Geometry 2D Fitting is internally used (e.g. FitCircleToPoints in
FitCircleToEdges). An exception to the rule is path fitting. No Geometry 2D Fitting filter is needed there, because
the found points serve themselves as the output path characteristic points.

ToolsetToolset

The typical usage of the shape fitting method encompasses two distinct functions. One of the CreateObjectFittingMapCreateObjectFittingMap functions (e.g.

CreateCircleFittingMapCreateCircleFittingMap) has to be used before any other Shape Fitting function. The special functions create a fitting map consisting of the scan

segments. The fitting map is then passed as an input to other functions and, because it generally must be created only once for a whole series of

fitting, this strategy speeds up the computations considerably. However, the fitting map must be created before every fitting when

inFittingFieldAlignmentinFittingFieldAlignment parameter of the CreateObjectFittingMapCreateObjectFittingMap function is not Nil.

A sample program is shown below:

The scan segments are created according to the fitting

field and other parameters (e.g. inScanCountinScanCount).

ScanSingleEdge (or another proper 1D Edge

Detection filter) is performed.

A segment is fitted to the obtained

points.

The scan segments are created according to the fitting

field and other parameters (e.g. inScanCountinScanCount).

ScanSingleEdge (or another proper 1D Edge

Detection filter) is performed.

A segment is fitted to the obtained

points.

https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/FitCircleToPoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html

// Precompute CircleFittingMap before loop.

avl::CreateCircleFittingMap

(

 sampleImage,

 CircleFittingField(expectedCircle, 20.0f),

 NIL,

 10,

 1,

 SamplingParams(InterpolationMethod::Bilinear, 1.0f, atl::NIL),

 circleFittingMap

);

while (true)

{

 Image image;

 atl::Conditional<avl::Circle2D> outCircle;

 GetImageFromCamera(image); // Get images from a camera.

 avl::FitCircleToEdges // Perform fitting.

 (

 image,

 circleFittingMap,

 EdgeScanParams(),

 Selection::Best,

 NIL,

 0.1f,

 CircleFittingMethod::AlgebraicPratt,

 NIL,

 outCircle

);

 if (outCircle != NIL)

 {

 // Process results.

 }

}

ParametersParameters

Because of the internal use of 1D Edge Detection filters and Geometry 2D Fitting filters, all parameters known from them are also present in Shape

Fitting filters interfaces.

Beside these, there are also a few parameters specific to the subject of shape fitting. The inScanCountinScanCount parameter controls the number of the scan

segments. However, not all of the scans have to succeed in order to regard the whole fitting process as being successful. The inMaxIncompletenessinMaxIncompleteness

parameter determines what fraction of the scans may fail.

FitCircleToEdges performed on the sample image with inMaxIncompletenessinMaxIncompleteness = 0.25. Although two scans have ended in failure, the circle has been fitted

successfully.

The path fitting functions have some additional parameters, which help to control the output path shape. These parameters are:

inMaxDeviationDeltainMaxDeviationDelta 3 it defines the maximal allowed difference between deviations of consecutive points of the
output path from the corresponding input path points; if the difference between deviations is greater, the point is
considered to be not found at all.
inMaxInterpolationLengthinMaxInterpolationLength 3 if some of the scans fail or if some of found points are classified to be wrong
according to another control parameters (e.g. inMaxDeviationDeltainMaxDeviationDelta), output path points corresponding to them are
interpolated depending on points in their nearest vicinity. No more than inMaxInterpolationLengthinMaxInterpolationLength consecutive
points can be interpolated, and if there exists a longer series of points that would have to be interpolated, the
fitting is considered to be unsuccessful. The exception to this behavior are points which were not found on both
ends of the input path. Those are not part of the result at all.

FitPathToEdges performed on the sample image with inMaxDeviationDeltainMaxDeviationDelta = 2 and inMaxInterpolationLengthinMaxInterpolationLength = 3. Blue points are the points that were

interpolated. If inMaxInterpolationLengthinMaxInterpolationLength value was less than 2, the fitting would have failed.

Template MatchingTemplate Matching

IntroductionIntroduction

Template Matching is a high-level machine vision technique that identifies the parts on an image that match a

predefined template. Advanced template matching algorithms allow to find occurrences of the template regardless

of their orientation and local brightness.

Template Matching techniques are flexible and relatively straightforward to use, which makes them one of the

most popular methods of object localization. Their applicability is limited mostly by the available

computational power, as identification of big and complex templates can be time-consuming.

https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitPathToEdges.html

ConceptConcept

Template Matching techniques are expected to address the following need: provided a reference image of an object (the template image) and an image to

be inspected (the input image) we want to identify all input image locations at which the object from the template image is present. Depending on the

specific problem at hand, we may (or may not) want to identify the rotated or scaled occurrences.

We will start with a demonstration of a naive Template Matching method, which is insufficient for real-life applications, but illustrates the core

concept from which the actual Template Matching algorithms stem from. After that we will explain how this method is enhanced and extended in advanced

Grayscale-based MatchingGrayscale-based Matching and Edge-based MatchingEdge-based Matching routines.

Naive Template MatchingNaive Template Matching

Imagine that we are going to inspect an image of a plug and our goal is to find its pins. We are provided with a template image representing the

reference object we are looking for and the input image to be inspected.

We will perform the actual search in a rather straightforward way 3 we will position the template over the image at every possible location, and each

time we will compute some numeric measure of similarity between the template and the image segment it currently overlaps with. Finally we will

identify the positions that yield the best similarity measures as the probable template occurrences.

Image CorrelationImage Correlation

One of the subproblems that occur in the specification above is calculating the similarity measure of the aligned template image and the overlapped

segment of the input image, which is equivalent to calculating a similarity measure of two images of equal dimensions. This is a classical task, and a

numeric measure of image similarity is usually called image correlation.

Cross-CorrelationCross-Correlation

The fundamental method of calculating the image correlation is so called cross-correlation, which

essentially is a simple sum of pairwise multiplications of corresponding pixel values of the images.

Though we may notice that the correlation value indeed seems to reflect the similarity of the images

being compared, cross-correlation method is far from being robust. Its main drawback is that it is

biased by changes in global brightness of the images - brightening of an image may sky-rocket its

cross-correlation with another image, even if the second image is not at all similar.

Normalized Cross-CorrelationNormalized Cross-Correlation

Normalized cross-correlation is an enhanced version of the classic cross-correlation method that introduces two

improvements over the original one:

The results are invariant to the global brightness changes, i.e. consistent brightening
or darkening of either image has no effect on the result (this is accomplished by
subtracting the mean image brightness from each pixel value).
The final correlation value is scaled to [-1, 1] range, so that NCC of two identical
images equals 1.0, while NCC of an image and its negation equals -1.0.

Template Correlation ImageTemplate Correlation Image

Let us get back to the problem at hand. Having introduced the Normalized Cross-Correlation - robust measure of image similarity - we are now able to

determine how well the template fits in each of the possible positions. We may represent the results in a form of an image, where brightness of each

pixels represents the NCC value of the template positioned over this pixel (black color representing the minimal correlation of -1.0, white color

representing the maximal correlation of 1.0).

Identification of MatchesIdentification of Matches

All that needs to be done at this point is to decide which points of the template correlation image are good enough to be considered actual matches.

Usually we identify as matches the positions that (simultaneously) represent the template correlation:

stronger that some predefined threshold value (i.e stronger that 0.5)
locally maximal (stronger that the template correlation in the neighboring pixels)

Template image Input image

Image1Image1 Image2Image2 Cross-CorrelationCross-Correlation

19404780

23316890

24715810

Image1Image1 Image2Image2 NCCNCC

-0.417

0.553

0.844

Template image Input image Template correlation image

SummarySummary

It is quite easy to express the described method in Aurora Vision Studio - we will need just two built-in

filters. We will compute the template correlation image using the ImageCorrelationImage filter, and then

identify the matches using ImageLocalMaxima - we just need to set the inMinValueinMinValue parameter that will cut-

off the weak local maxima from the results, as discussed in previous section.

Though the introduced technique was sufficient to solve the problem being considered, we may notice its

important drawbacks:

Template occurrences have to preserve the orientation of the reference template
image.
The method is inefficient, as calculating the template correlation image for
medium to large images is time consuming.

In the next sections we will discuss how these issues are being addressed in advanced template matching techniques: Grayscale-based MatchingGrayscale-based Matching and

Edge-based MatchingEdge-based Matching.

Grayscale-based Matching, Edge-based MatchingGrayscale-based Matching, Edge-based Matching

Grayscale-based MatchingGrayscale-based Matching is an advanced Template Matching algorithm that extends the original idea of correlation-based template detection

enhancing its efficiency and allowing to search for template occurrences regardless of its orientation. Edge-based MatchingEdge-based Matching enhances this method

even more by limiting the computation to the object edge-areas.

In this section we will describe the intrinsic details of both algorithms. In the next section (Filter toolsetFilter toolset) we will explain how to use these

techniques in Aurora Vision Studio.

Image PyramidImage Pyramid

Image Pyramid is a series of images, each image being a result of downsampling (scaling down, by the factor of two in this case) of the previous

element.

Pyramid ProcessingPyramid Processing

Image pyramids can be applied to enhance the efficiency of the correlation-based template detection. The important observation is that the template

depicted in the reference image usually is still discernible after significant downsampling of the image (though, naturally, fine details are lost in

the process). Therefore we can identify match candidates in the downsampled (and therefore much faster to process) image on the highest level of our

pyramid, and then repeat the search on the lower levels of the pyramid, each time considering only the template positions that scored high on the

previous level.

At each level of the pyramid we will need appropriately downsampled picture of the reference template, i.e. both input image pyramid and template

image pyramid should be computed.

Grayscale-based MatchingGrayscale-based Matching

Although in some of the applications the orientation of the objects is uniform and fixed (as we have seen in the plug example), it is often the case

that the objects that are to be detected appear rotated. In Template Matching algorithms the classic pyramid search is adapted to allow multi-angle

matching, i.e. identification of rotated instances of the template.

This is achieved by computing not just one template image pyramid, but a set of pyramids - one for each possible rotation of the template. During the

pyramid search on the input image the algorithm identifies the pairs (template position, template orientation) rather than sole template positions.

Similarly to the original schema, on each level of the search the algorithm verifies only those (position, orientation) pairs that scored well on the

previous level (i.e. seemed to match the template in the image of lower resolution).

Areas of template correlation above

0.75

Points of locally maximal template

correlation

Points of locally maximal template correlation above

0.75

Level 0 (input image) Level 1 Level 2

Level 0 (template reference image) Level 1 Level 2

https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageLocalMaxima.html

The technique of pyramid matching together with multi-angle search constitute the Grayscale-based Template MatchingGrayscale-based Template Matching method.

Edge-based MatchingEdge-based Matching

Edge-based Matching enhances the previously discussed Grayscale-based Matching using one crucial observation - that the shape of any object is defined

mainly by the shape of its edges. Therefore, instead of matching of the whole template, we could extract its edges and match only the nearby pixels,

thus avoiding some unnecessary computations. In common applications the achieved speed-up is usually significant.

Matching object edges instead of an object as a whole requires slight

modification of the original pyramid matching method: imagine we are matching an

object of uniform color positioned over uniform background. All of object edge

pixels would have the same intensity and the original algorithm would match the

object anywhere wherever there is large enough blob of the appropriate color, and

this is clearly not what we want to achieve. To resolve this problem, in Edge-

based Matching it is the gradient direction (represented as a color in HSV space

for the illustrative purposes) of the edge pixels, not their intensity, that is

matched.

Filter ToolsetFilter Toolset

Aurora Vision Studio provides a set of filters implementing both Grayscale-Grayscale-

based Matchingbased Matching and Edge-based MatchingEdge-based Matching. For the list of the filters see Template Matching filters.

As the template image has to be preprocessed before the pyramid matching (we need to calculate the template image pyramids for all possible rotations

and scales), the algorithms are split into two parts:

Model CreationModel Creation - in this step the template image pyramids are calculated and the results are stored in a model -
atomic object representing all the data needed to run the pyramid matching.
MatchingMatching - in this step the template model is used to match the template in the input image.

Such an organization of the processing makes it possible to compute the model once and reuse it multiple times.

Available FiltersAvailable Filters

For both Template Matching methods two filters are provided, one for each step of the algorithm.

Please note that the use of CreateGrayModel and CreateEdgeModel2 filters will only be necessary in more advanced applications. Otherwise it is enough

to use a single filter of the MatchingMatching step and create the model by setting the inGrayModel or inEdgeModel parameter of the filter. The

CreateEdgeModel2 and LocateMultipleObjects_Edges2 filters are preferred over CreateEdgeModel1 and LocateMultipleObjects_Edges1 because they are newer,

more advanced versions with more capabilities.

The main challenge of applying the Template Matching technique lies in careful adjustment of filter parameters, rather than designing the program

structure.

Advanced Application SchemaAdvanced Application Schema

There are several kinds of advanced applications, for which the interactive GUI for Template Matching is not enough and the user needs to use the

CreateGrayModel or CreateEdgeModel2 filter directly. For example:

1. When creating the model requires non-trivial image preprocessing.
2. When we need an entire array of models created automatically from a set of images.
3. When the end user should be able to define his own templates in the runtime application (e.g. by making a selection

on an input image).

Schema 1Schema 1: Model Creation in a Separate Program: Model Creation in a Separate Program

For the cases 1 and 2 it is advisable to implement model creation in a separate Task macrofilter, save the model to an AVDATA file and then link that

file to the input of the matching filter in the main program:

Template image Input image Results of multi-angle matching

Grayscale-based Matching:Grayscale-based Matching:

Edge-based Matching:Edge-based Matching:

Different kinds of template pyramids used in Template Matching algorithms.

Grayscale-based MatchingGrayscale-based Matching Edge-based MatchingEdge-based Matching

ModelModel
Creation:Creation:

Matching:Matching:

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_Edges1.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html

When this program is ready, you can run the "CreateModel" task as a program at any time you want to recreate the model. The link to the data file on

the input of the matching filter does not need any modifications then, because this is just a link and what is being changed is only the file on disk.

Schema 2:Schema 2: Dynamic Model Creation Dynamic Model Creation

For the case 3, when the model has to be created dynamically, both the model creating filter and the matching filter have to be in the same task. The

former, however, should be executed conditionally, when a respective HMI event is raised (e.g. the user clicks an ImpulseButton or makes some mouse

action in a VideoBox). For representing the model, a register of EdgeModel2? type should be used, that will store the latest model. Here is an example

realization with the model being created from a predefined box on an input image when a button is clicked in the HMI:

Model Creation:Model Creation:

Main Program:Main Program:

Model CreationModel Creation

Height of the PyramidHeight of the Pyramid

The inMaxPyramidLevelinMaxPyramidLevel parameter determines the number of levels of the pyramid matching and should be set to the largest number for which the

template is still recognizable on the highest pyramid level. This value should be selected through interactive experimentation using the diagnostic

output diagTemplatePyramiddiagTemplatePyramid (Grayscale-based Matching) or diagEdgePyramiddiagEdgePyramid (Edge-based Matching).

The inMinPyramidLevelinMinPyramidLevel parameter determines the lowest pyramid level that is generated during creation phase and the lowest pyramid level that the

occurrences are tracked to during location phase. If the parameter is set to lower value in location than in creation, the missing levels are

generated dynamically by the locating filter. This approach leads to much faster creation, but a bit slower location.

In the following example the inMaxPyramidLevelinMaxPyramidLevel value of 4 would be too high (for both methods), as the structure of the template is entirely lost on

this level of the pyramid. Also the value of 3 seems a bit excessive (especially in case of Edge-based Matching) while the value of 2 would definitely

be a safe choice.

Angle RangeAngle Range

The inMinAngleinMinAngle, inMaxAngleinMaxAngle parameters determine the range of template orientations that will be considered in the matching process. For instance

(values in brackets represent the pairs of inMinAngleinMinAngle, inMaxAngleinMaxAngle values):

(-180.0, 180.0): all rotations are considered (default value)
(-15.0, 15.0): the template occurrences are allowed to deviate from the reference template orientation at most by
15.0 degrees (in each direction)
(0.0, 0.0): the template occurrences are expected to preserve the reference template orientation

Wide range of possible orientations introduces significant amount of overhead (both in memory usage and computing time), so it is advisable to limit

the range whenever possible, especially if different scales are also involved. The number of rotations created can be further manipulated with

Level 0Level 0 Level 1Level 1 Level 2Level 2 Level 3Level 3 Level 4Level 4

Grayscale-based MatchingGrayscale-based Matching
(diagTemplatePyramid):(diagTemplatePyramid):

Edge-based MatchingEdge-based Matching
(diagEdgePyramid):(diagEdgePyramid):

inAnglePrecisioninAnglePrecision parameter. Decreasing it results in smaller models and smaller execution times, but can also lead to objects that are slightly less

accurate.

Scale RangeScale Range

The inMinScaleinMinScale, inMaxScaleinMaxScale parameters determine the range of template scales that will be considered in the matching process. It enables locating

objects that are slightly smaller or bigger than the object used during model creation.

Wide range of possible scales introduces significant amount of overhead (both in memory usage and computing time), so it is advisable to limit the

range whenever possible. The number of scales created can be further manipulated with inScalePrecisioninScalePrecision parameter. Decreasing it results in smaller

models and smaller execution times, but can also lead to objects that are slightly less accurate.

Edge Detection Settings (only Edge-based Matching)Edge Detection Settings (only Edge-based Matching)

The inEdgeThresholdinEdgeThreshold, inEdgeHysteresisinEdgeHysteresis parameters of CreateEdgeModel2 filter determine the settings of the hysteresis thresholding used to detect

edges in the template image. The lower the inEdgeThresholdinEdgeThreshold value, the more edges will be detected in the template image. These parameters should be

set so that all the significant edges of the template are detected and the amount of redundant edges (noise) in the result is as limited as possible.

Similarly to the pyramid height, edge detection thresholds should be selected through interactive experimentation using the outEdgesoutEdges output and the

diagnostic output diagEdgePyramiddiagEdgePyramid - this time we need to look only at the picture at the lowest level.

The CreateEdgeModel2 filter will not allow to create a model in which no edges were detected at the top of the pyramid (which means not only some

significant edges were lost, but all of them), yielding an error in such case. Whenever that happens, the height of the pyramid, or the edge

thresholds, or both, should be reduced.

MatchingMatching

The inMinScoreinMinScore parameter determines how permissive the algorithm will be in verification of the match candidates - the higher the value the less

results will be returned. This parameter should be set through interactive experimentation to a value low enough to assure that all correct matches

will be returned, but not much lower, as too low value slows the algorithm down and may cause false matches to appear in the results.

Tips and Best PracticesTips and Best Practices

How to Select a Method?How to Select a Method?

For vast majority of applications the Edge-based MatchingEdge-based Matching method will be both more robust and more efficient than Grayscale-based MatchingGrayscale-based Matching. The

latter should be considered only if the template being considered has smooth color transition areas that are not defined by discernible edges, but

still should be matched.

How to even further upgrade the results of How to even further upgrade the results of Edge-based MatchingEdge-based Matching??

You can use EnhanceMultipleObjectMatches filter or EnhanceSingleObjectMatch filter to fine-tune the results. A great example of usage is presented in

the CreateGoldenTemplate2 filter.

Using Local Coordinate SystemsUsing Local Coordinate Systems

IntroductionIntroduction

Local coordinate systems provide a convenient means for inspecting objects that may appear at different positions on the input image. Instead of

denoting coordinates of geometrical primitives in the absolute coordinate system of the image, local coordinate systems make it possible to use

coordinates local to the object being inspected. In an initial step of the program the object is located and a local coordinate system is set

accordingly. Other tools can then be configured to work within this coordinate system, and this makes them independent of the object translation,

rotation and scale.

Two most important notions here are:

CoordinateSystem2DCoordinateSystem2D 3 a structure consisting of Origin (Point2D), Angle (real number) and Scale (real number),
defining a relative Cartesian coordinate system with its point (0, 0) located at the Origin point of the parent
coordinate system (usually an image).
AlignmentAlignment 3 the process of transforming geometrical primitives from a local coordinate system to the coordinates of
an image (absolute), or data defining such transformation. An alignment is usually represented with the
CoordinateSystem2DCoordinateSystem2D data type.

Creating a Local Coordinate SystemCreating a Local Coordinate System

There are two standard ways of setting a local coordinate system:

1. With Template Matching filters it is straightforward as the filters have outObjectAlignment(s)outObjectAlignment(s) outputs, which
provide local coordinate systems of the detected objects.

2. With one of the CreateCoordinateSystem functions, which allow for creating local coordinate systems manually at any
location, and with any rotation and scale. In most typical scenarios of this kind, the objects are located with 1D
Edge Detection, Shape Fitting or Blob Analysis tools.

Using a Local Coordinate SystemUsing a Local Coordinate System

After a local coordinate system is created it can be used in the subsequent image analysis tools. The high level tools available in Aurora Vision

Studio have an inAlignmentinAlignment (or similar) input, which just needs to be connected to the port of the created local coordinate system. At this point,

you should first run the program at least to the point where the coordinate system is computed, and then the geometrical primitives you will be

defining on other inputs, will be automatically aligned with the position of the inspected object.

Example 1: Alignment from Template MatchingExample 1: Alignment from Template Matching

To use object alignment from a Template Matching filter, you need to connect the AlignmentAlignment ports:

(15.0, 30.0) - excessive amount of noise (40.0, 60.0) - OK (60.0, 70.0) - significant edges lost

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/EnhanceMultipleObjectMatches.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/EnhanceSingleObjectMatch.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DConstructions/index.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/ShapeFitting.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/index.html

Template Matching and an aligned circle fitting.

When you execute the template matching filter and enter the editor of the inFittingFieldinFittingField input of the FitCircleToEdges filter, you will have the

local coordinate system already selected (you can also select it manually) and the primitive you create will have relative coordinates:

Editing an expected circle in a local coordinate system.

During program execution this geometrical primitive will be automatically aligned with the object position. Moreover, you will be able to adjust the

input primitive in the context of any input image, because they will be always displayed aligned. Here are example results:

https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html

Example 2: Alignment from Blob AnalysisExample 2: Alignment from Blob Analysis

In many applications objects can be located with methods simpler and faster than Template Matching 3 like 1D Edge Detection, Shape Fitting or Blob

Analysis. In the following example we will show how to create a local coordinate system from two blobs:

Two holes clearly define the object location.

In the first step we detect the blobs (see also: Blob Analysis) and their centers:

In the second step we sort the centers by the X coordinate and create a coordinate system "from segment" defined by the two points

(CreateCoordinateSystemFromSegment). The segment defines both the origin and the orientation. Having this coordinate system ready, we connect it to

the inScanPathAlignmentinScanPathAlignment input of ScanExactlyNRidges, which will measure the distance between two insets. The measurement will work correctly

irrespective of the object position (mind the expanded structure inputs and outputs):

Manual AlignmentManual Alignment

In some cases the filter you will need to use with a local coordinate system will have no appropriate inAlignmentinAlignment input. In such cases the solution

is to transform the primitive manually with filters like AlignPoint, AlignCircle, AlignRectangle. These filters accept a geometrical primitive defined

in a local coordinate system, and the coordinate system itself, and return the same primitive, but with absolute coordinates, i.e. aligned to the

coordinate system of an image.

A very common case is with ports of type Region, which is pixel-precise and, while allowing for creation of arbitrary shapes, cannot be directly

transformed. In such cases it is advisable to use the CreateRectangleRegion filter and define the region-of-interest at inRectangleinRectangle. The filter,

having also the inRectangleAlignmentinRectangleAlignment input connected, will return a region properly aligned with the related object position. Some ready-made

tools, e.g. CheckPresence_Intensity, use this approach internally.

Not Mixing Local Coordinate SystemsNot Mixing Local Coordinate Systems

It is important to keep in mind that geometrical primitives that appear in different places of a program may belong to different coordinate systems.

When such different objects are combined together (e.g. with a filter like SegmentSegmentIntersection) or placed on a single data preview, the results

will be meaningless or at least confusing. Thus, only objects belonging to the same coordinate system should be combined. In particular, when placing

primitives on a preview on top of an image, only aligned primitives (with absolute coordinates) should be used.

As a general rule, image analysis filters of Aurora Vision Studio accept primitives in local coordinate systems on inputs, but outputs are always

Filters detecting blobs and their centers.

The result of blob detection.

Filters creating a coordinate systems and performing an aligned

measurement.

Created local coordinate system and an aligned measurement.

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/ShapeFitting.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DConstructions/CreateCoordinateSystemFromSegment.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/AlignPoint.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/AlignCircle.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/AlignRectangle.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionBasics/CreateRectangleRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CheckPresence_Intensity.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DIntersections/SegmentSegmentIntersection.html

Result of data extraction using OCR.

aligned (i.e. in the absolute coordinate system). In particular, many filters that align input primitives internally also have outputs that contain

the input primitive transformed to the absolute coordinate system. For example, the ScanSingleEdge filters has a inScanPathinScanPath input defined in a local

coordinate system and a corresponding outAlignedScanPathoutAlignedScanPath output defined in the absolute coordinate system:

The ScanSingleEdge filter with a pair of ports: inScanPathinScanPath and outAlignedScanPathoutAlignedScanPath, belonging to different coordinate systems.

Optical Character Recognition - traditional methodOptical Character Recognition - traditional method

IntroductionIntroduction

Optical Character Recognition (OCR) is a machine vision task consisting in extracting textual information

from images.

State of the art techniques for OCR offer high accuracy of text recognition and invulnerability to medium

grain graphical noises. They are also applicable for recognition of characters made using dot matrix

printers. This technology gives satisfactory results for partially occluded or deformed characters.

Please be informed that this article is referring to the traditional OCR method. Nowadays, wePlease be informed that this article is referring to the traditional OCR method. Nowadays, we

strongly recommend using Deep Learning OCR tools, which are much faster and more efficientstrongly recommend using Deep Learning OCR tools, which are much faster and more efficient

than the traditional ones in many cases. than the traditional ones in many cases. You can find more information about the Deep LearningYou can find more information about the Deep Learning

tools tools herehere..

Efficiency of the traditional recognition process mostly depends on the quality of text segmentation

results. Most of the recognition cases can be done using a provided set of recognition models. In other

cases a new recognition model can be easily prepared.

ConceptConcept

OCR technology is widely used for automatic data reading from various sources. It is especially used to gather data from documents and printed labels.

In the first part of this manual usage of high level filters will be described.

The second part of this manual shows how to use standard OCR models provided with Aurora Vision Studio. It also shows how to prepare an image to get

best possible results of recognition.

The third part describes the process of preparing and training OCR models.

The last part presents an example program that reads text from images.

Using high level Optical Character Recognition filtersUsing high level Optical Character Recognition filters

Aurora Vision Studio offers a convenient way to extract a text region from an image and then read it using a trained OCR classifier.

The typical OCR application consists of the following steps:

1. Find text positionFind text position 3 locate the text position using template matching,
2. Extract textExtract text 3 use the filter ExtractText to distinct the text form the background and perform its segmentation,
3. Read textRead text 3 recognizing the extracted characters with the ReadText filter.

Example OCR application using high level filters.

Details on Optical Character Recognition techniqueDetails on Optical Character Recognition technique

Reading text from imagesReading text from images

In order to achieve the most accurate recognition it is necessary to perform careful text extraction and segmentation. The overall process of

acquiring text from images consists of the following steps:

https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/DeepLearning.html#read_characters
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/ExtractText.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/ReadText.html

1. Getting text location,
2. Extracting text from the background,
3. Segmenting text,
4. Using prepared OCR models,
5. Character recognition,
6. Interpreting results,
7. Verifying results.

The following sections will introduce methods used to detect and recognize text from images. For better understanding of this guide the reader should

be familiar with basic blob analysis techniques.

Getting text locationGetting text location

In general, text localization tasks can be divided into three cases:

1. The location of text is fixed and it is described by boxes called masks. For example, the personal identification
card is produced according to the formal specification. The location of each data field is known. A well calibrated
vision system can take images in which the location of the text is almost constant.

An example image with text masks.

2. Text location is not fixed, but it is related to a characteristic element on the input images or to a special marker
(an optical mark). To get the location of the text the optical mark has to be found. This can be done with template
matching, 1D edge detection or other technique.

3. The location of text is not specified, but characters can be easily separated from the background with image
thresholding. The correct characters can then be found with blob analysis techniques.

Getting text from a bottle cap.

When the text location is specified, the image under analysis must be transformed to make text lines parallel to the X-axis. This can be done with

RotateImage, CropImageToRectangle or ImageAlongPath filters.

Extracting text from the backgroundExtracting text from the background

A major complication during the process of text extraction may be uneven light. Some techniques like light normalization or edge sharpening can help

in finding characters. The example of light normalization can be found in the example project Examples\Tablets. The presentation of image sharpening

using the Fourier transform can be found in the Examples\Fourier example.

Original image.

Image after light normalization.

Image after low-frequency image damping using the Fourier transform.

Text extraction is based on image binarization techniques. To extract characters, filters like ThresholdToRegion and ThresholdToRegion_Dynamic can be

used. In order to avoid recognizing regions which do not include characters, it is advisable to use filters based on blob area.

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/RotateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/ImageAlongPath.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html

Sample images with uneven light.

Results of ThresholdToRegion and ThresholdToRegion_Dynamic on images with uneven light.

At this point the extracted text region is prepared for segmentation.

Segmenting textSegmenting text

Text region segmentation is a process of splitting a region into lines and individual characters. The recognition step is only possible if each region

contains a single character.

Firstly, if there are multiple lines of text, separation into lines must be performed. If the text orientation is horizontal, simple region dilation

can be used followed by splitting the region into blobs. In other cases the text must be transformed, so that the lines become horizontal.

The process of splitting text into lines using region morphology filters.

When text text lines are separated, each line must be split into individual characters. In a case when characters are not made of diacritic marks and

characters can be separated well, the filter SplitRegionIntoBlobs can be used. In other cases the filter SplitRegionIntoExactlyNCharacters or

SplitRegionIntoMultipleCharacters must be used.

Character segmentation using SplitRegionIntoBlobs.

Character segmentation using SplitRegionIntoMultipleCharacters.

Next, the extracted characters will be translated from graphical representation to textual representation.

Using prepared OCR modelsUsing prepared OCR models

Standard OCR models are typically located in the disk directory C:\ProgramData\Aurora Vision\{Aurora Vision Product Name}\PretrainedFonts.

The table below shows the list of available font models:

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SplitRegionIntoExactlyNCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html

Character recognitionCharacter recognition

Aurora Vision Library offers two types of character classifiers:

1. Classifier based on multi-layer perceptron (MLP).
2. Classifier based on support vector machines (SVM).

Both of the classifiers are stored in the OcrModel type. To get a text from character regions use the RecognizeCharacters filter, shown on the image

below:

The first and the most important step is to choose the appropriate character normalization size. The internal classifier recognizes characters using

their normalized form. More information about character normalization process will be provided in the section describing the process of classifier

training.

The character normalization allows to classify characters with different sizes. The parameter inCharacterSizeinCharacterSize defines the size of a character before

the normalization. When the value is not provided, the size is calculated automatically using the character bounding box.

Font nameFont name Font typefaceFont typeface Set nameSet name CharactersCharacters

OCRA monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

OCRB monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

MICR monospaced ABC09 ABC0123456789

Computer monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

DotMatrix monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ+-./

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ+-01234556789./

09 01234556789.+-/

Regular proportional

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-/+

https://docs.adaptive-vision.com/5.6/avl/datatypes/OcrModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/RecognizeCharacters.html

Next, character sorting order must be chosen. The default order is from left to right.

If the input text contains spaced characters, the value of inMinSpaceWidthinMinSpaceWidth input must be set. This value indicates the minimal distance between two

characters between which a space will be inserted.

Character recognition provides the following information:

1. the read text as a string (outCharactersoutCharacters),
2. an array of character recognition scores (outScoresoutScores),
3. an array of recognition candidates for each character (outCandidatesoutCandidates).

Interpreting resultsInterpreting results

The table below shows recognition results for characters extracted from the example image. An unrecognized character is colored in red.

In this example the letter P was not included in the training set. In effect, the OCR model was unable to recognize the representation of the P

letter. The internal classifier was trying to select most similar known character.

Verifying resultsVerifying results

After reading result should be check if text follows constraints. It can be done using simple string manipulation.

Preparation of the OCR modelsPreparation of the OCR models

An OCR model consists of an internal statistical tool called a classifier and a set of character data. There are two kinds of classifiers used to

recognize characters. The first classifier type is based on the multilayer perceptron classifier (MLP) and the second one uses support vector machines

(SVM). For further details please refer to the documentation of the MLP_Init and the SVM_Init filters. Each model must be trained before it can be

used.

The process of OCR model training consists of the following steps:

1. preparation of the training data set,
2. selection of the normalization size and character features,
3. setup of the OCR model,
4. training of the OCR model,
5. saving results to a file.

When these steps are performed, the model is ready to use.

Preparation of the training data setPreparation of the training data set

Each classifier needs character samples in order to begin the training process. To get the best recognition accuracy, the training character samples

should be as similar as possible to those which will be provided for recognition. There are two possible ways to obtain sample characters: (1)

Character presentationCharacter presentation Characters afterCharacters after
normalizationnormalization

DescriptionDescription

The appropriate character size is chosen.

The size of character is too small.

Too much information about a character is lost because of
too large size has been selected .

OriginalOriginal
charactercharacter

RecognizedRecognized
charactercharacter

ScoreScore CandidatesCandidates
(character and accuracy)(character and accuracy)

(outCharacters)(outCharacters) (outScores)(outScores) (outCandidates)(outCandidates)

E E 1.00 E: 1.00

X X 1.00 X: 1.00

A A 1.00 A: 1.00

M M 1.00 M: 1.00

P RR 0.50 R: 0.90 B: 0.40

L L 1.00 L: 1.00

E E 1.00 E: 1.00

https://docs.adaptive-vision.com/5.6/avl/functions/MultilayerPerceptron/MLP_Init.html
https://docs.adaptive-vision.com/5.6/avl/functions/SupportVectorMachines/SVM_Init.html

Synthetic characters generated by means of a computer font.

Character samples acquired from a real usage.

extraction of characters from real images or (2) generation of artificial characters using

computer fonts.

In the perfect world the model should be trained using numerous real samples. However,

sometimes it can be difficult to gather enough real character samples. In this case

character samples should be generated by deforming the available samples. A classifier

which was trained on a not big enough data set can focus only on familiar character

samples at the same time failing to recognize slightly modified characters.

Example operations which are used to create new character samples:

1. region rotation (using the RotateRegion filter),
2. shearing (ShearRegion),
3. dilatation and erosion (DilateRegion, ErodeRegion),
4. addition of a noise.

The set of character samples deformed by: the region rotation, morphological transforms, shearing and noises.

Note: Adding too many deformed characters to a training set will increase the training time of a model.

Note: Excessive deformation of character shape can result in classifier inability to recognize the learnt character base. For example: if the training

set contains a C character with too many noises, it can be mistaken for O character. In this case the classifier will be unable to determine the base

of a newly provided character.

Each character sample must be stored in a structure of type CharacterSample. This structure consists of a character region and its textual

representation. To create an array of character samples use the MakeCharacterSamples filter.

Selection of normalization size and character featuresSelection of normalization size and character features

The character normalization allows for reduction of the amount of data used in the character classification. The other aim of normalization is to

enable the classification process to recognize characters of various sizes.

During normalization each character is resized into a size which was provided during the model initialization. All further classifier operations will

be performed on the resized (normalized) characters.

Various size characters before and after the normalization process.

Selection of too large normalization size will increase training time of the OCR classifier. On the other hand, too low size will result in loss of

important character details. The selected normalization size should be a compromise between classification time and the accuracy of recognition. For

the best results, a character size after normalization should be similar to its size before normalization.

During the normalization process some character details will be lost, e.g. the aspect ratio of a character. In the training process, some additional

information can be added, which can compensate for the information loss in the normalization process. For further information please refer to the

documentation of the TrainOcr_MLP filter.

Training of the OCR modelTraining of the OCR model

There are two filters used to train each type of an OCR classifier. These filters require parameters which describe the classifier training process.

Saving the training resultsSaving the training results

After successful classifier training the results should be saved for future use. The function SaveOcrModel should be used.

Camera Calibration and World CoordinatesCamera Calibration and World Coordinates

Camera CalibrationCamera Calibration

Camera calibration, also known as camera resectioning, is a process of estimating parameters of a camera model: a set of parameters that describe the

internal geometry of image capture process. Accurate camera calibration is is essential for various applications, such as multi-camera setups where

images relate to each other, removing geometric distortions due to lens imperfections, or precise measurement of real-world geometric properties

(positions, distances, areas, straightness, etc.).

The model to be used is chosen depending on the camera type (e.g. projective camera, telecentric camera, line scan camera) and accuracy requirements.

In a case of a standard projective camera, the model (known as pinhole camera model) consists of focal length, principal point location and distortion

parameters.

A few distortion model types are supported. The simplest - divisional - supports most use cases and has predictable behaviour even when calibration

data is sparse. Higher order models can be more accurate, however they need a much larger dataset of high quality calibration points, and are usually

needed for achieving high levels of positional accuracy across the whole image - order of magnitude below 0.1 pix. Of course this is only a rule of

thumb, as each lens is different and there are exceptions.

The area scan camera models (pinhole or telecentric) contain only intrinsic camera parameters, and so it does not change with camera repositioning,

rotations, etc. Thanks to that, there is no need for camera calibration in the production environment, the camera can be calibrated beforehand. As

soon as the camera has been assembled with the lens and lens adjustments (zoom/focus/f-stop rings) have been tightly locked, the calibration images

can be taken and camera calibration performed. Of course any modifications to the camera-lens setup void the calibration parameters, even apparently

minor ones such as removing the lens and putting it back on the camera in seemingly the same position.

On the other hand the line scan model contains parameters of whole imaging setup, i.e. camera and a moving element (usually a conveyor belt). Such

approach, in contrast with area scan camera calibration, is necessary as the moving element of line scan camera system is tightly bound within the

image acquisition geometry.

Training of MLP classifier using TrainOcr_MLP. Training of SVM classifier using TrainOcr_SVM.

https://docs.adaptive-vision.com/5.6/avl/functions/RegionSpatialTransforms/RotateRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionSpatialTransforms/ShearRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/DilateRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/ErodeRegion.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/CharacterSample.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/MakeCharacterSamples.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SaveOcrModel.html

Camera model can be directly used to obtain an undistorted image (an image, which would have been taken by a camera with the same basic parameters,

but without lens distortion present), however for most use cases the camera calibration is just a prerequisite to some other operation. For example,

when camera is used for inspection of planar surfaces (or objects lying on such surface), the camera model is needed to perform a World Plane

calibration (see World Plane - measurements and rectification section below).

In Aurora Vision Studio user will be prompted by a GUI when a camera calibration is needed to be performed. Alternatively, filters responsible for

camera calibration may be used directly: CalibrateCamera_Pinhole, CalibrateCamera_Telecentric, CalibrateCamera_LineScan.

World Plane - Measurements and RectificationWorld Plane - Measurements and Rectification

Vision systems which are concerned with observation and inspection of planar (flat) surfaces, or objects lying on such surfaces (e.g. conveyor belts)

can take advantage of the image to world plane transform mechanism of Aurora Vision Studio, which allows for:

Calculation of real world coordinates from locations on original image. This is crucial, for example, for
interoperability with external devices, such as industrial robots. Suppose a object is detected on the image, and
its location needs to be transmitted to the robot. The detected object location is given in image coordinates,
however the robot is operating in real world with different coordinate system. A common coordinate system is needed,
defined by a world plane.
Image rectification onto the world plane. This is needed when performing image analysis using original image is not
feasible (due to high degree of lens and/or perspective distortion). The results of analysis performed on a
rectified image can also be transformed to real-world coordinates defined by a world plane coordinate system.
Another use case is a multi-camera system 3 rectification of images from all the cameras onto common world plane
gives a simple and well defined relation between those rectified images, which allows for easy superimposing or
mosaic stitching.

The image below shows the image coordinate system. Image coordinates are denoted in pixels, with the origin point (0, 0) corresponding to the top-left

corner of the image. The X axis starts at the left edge of an image and goes towards the right edge. The Y axis starts at the top of the image towards

image bottom. All image pixels have nonnegative coordinates.

Directions and pixel positions in image coordinates.

The world plane is a distinguished flat surface, defined in the real 3D world. It may be arbitrarily placed with respect to the camera. It has a

defined origin position and XY axes.

Images below present the concept of a world plane. First image presents an original image, as captured by a camera that has not been mounted quite

straight above the object of interest. The second image presents a world plane, which has been aligned with the surface on which the object is

present. This allows for either calculation of world coordinates from pixel locations on original image, or image rectification, as shown on the next

images.

A set of grid pictures for basic calibration. Note that high accuracy applications require denser grids and higher amount of pictures. Also note

that all grids are perpendicular to the optical axis of the camera, so the focal length won't be calculated by the filter.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/CalibrateCamera_Pinhole.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/CalibrateCamera_Telecentric.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/CalibrateCamera_LineScan.html

Object of interest as captured by an imperfectly positioned camera.

World plane coordinate system superimposed onto the original image.

In order to use the image to world plane transform mechanism of Aurora Vision Studio, appropriate UI wizards are supplied:

For calculation of real world coordinates from locations on original image 3 use a wizard associated with the
inTransforminTransform input of ImagePointToWorldPlane filter (or other from ImageObjectsToWorldPlane group).
For image rectification onto the world plane 3 use a wizard associated with the inRectificationMapinRectificationMap input of
RectifyImage filter.

Although using UI wizards is the recommended course of action, the most complicated use cases may need a direct use of filters, in such a case

following steps are to be performed:

1. Camera calibration 3 this step is highly recommended to achieve accurate results, although not strictly necessary
(e.g. when lens distortion errors are insignificant).

2. World plane calibration 3 the CalibrateWorldPlane_* filters compute a RectificationTransform, which represents image
to world plane relation

3. The image to world plane relation then can be used to:
Calculate of real world coordinates from locations on original image, and vice versa, see
ImagePointToWorldPlane, WorldPlanePointToImage or similar filters (from ImageObjectsToWorldPlane or
WorldPlaneObjectsToImage groups).
Perform image rectification onto the world plane, see CreateRectificationMap_* filters.

There are different use cases of world coordinates calculation and image rectification:

Calculating world coordinates from pixel locations on original image without image rectification. This approach uses
transformation output for example by CalibrateWorldPlane_* to calculate real world coordinates with
ImageObjectsToWorldPlane_*
Second scenario is very similar to the first one with the difference of using image rectification. In this case,
after performing analysis on an rectified image (i.e. image remapped by RectifyImage), the locations can be
transformed to a common coordinate system given by the world plane by using the rectified image to world plane
relation. It is given by auxiliary output outRectifiedTransformoutRectifiedTransform of RectifyImage filter. Notice that the rectified
image to world plane relation is different than original image to world plane relation.
Last use case is to perform image rectification and rectified image analysis without its features recalculation to
real world coordinates.

Image to world plane coordinate calculation. Image rectification, with cropping to an area from point (0,0) to (5,5) in world

coordinates.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/ImagePointsToWorldPlane.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/ImagePointToWorldPlane.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/RectificationTransform.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/ImagePointToWorldPlane.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/WorldPlanePointToImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html

Notes:

Image to world plane transform is still a valid mechanism for telecentric cameras. Is such a case, the image would
be related to world plane by an affine transform.
Camera distortion is automatically accounted for in both world coordinate calculations and image rectification.
The spatial map generated by CreateRectificationMap_* filters can be thought of as a map performing image
undistortion followed by a perspective removal.

Extraction of Calibration GridsExtraction of Calibration Grids

Both camera calibration and image to world plane transform calculation use extracted calibration grids in the form of array of image points with grid

indices, i.e. annotated points.

Note that the real-world coordinates of the grids are 2D, because the relative coordinate of any point on the flat grid is .

Aurora Vision Studio provides extraction filters for a few standard grid formats (see: DetectCalibrationGrid_Chessboard and

DetectCalibrationGrid_Circles).

Using custom grids requires a custom solution for extracting the image point array. If the custom grid is a rectangular grid, the AnnotateGridPoints

filter may be used to compute annotations for the image points.

Note that the most important factor in achieving high accuracy results is the precision and accuracy of extracted calibration points. The calibration

grids should be as flat and stiff as possible (cardboard is not a proper backing material, thick glass is perfect). Take care of proper conditions

when taking the calibration images: minimize motion blur by proper camera and grid mounts, prevent reflections from the calibration surface (ideally

use diffusion lighting). When using a custom calibration grid, make sure that the points extractor can achieve subpixel precision. Verify that

measurements of the real-world grid coordinates are accurate. Also, when using a chessboard calibration grid, make sure that the whole calibration

grid is visible in the image. Otherwise, it will not be detected because the detection algorithm requires a few pixels wide quiet zone around the

chessboard. Pay attention to the number of columns and rows, as providing misleading data may make the algorithm work incorrectly or not work at all.

The recommended calibration grid to use in Aurora Vision Studio is a circles grid, see DetectCalibrationGrid_Circles. Optimal circle radius may vary

depending on exact conditions, however a good rule of thumb is 10 pixels (20 pixel diameter). Smaller circles tend to introduce positioning jitter.

Bigger circles lower the total amount of calibration points and suffer from geometric inaccuracies, especially when lens distortion and/or perspective

is noticeable. Note: it is important to use a symmetric board as shown in the image below. Asymmetric boards are currently not supported.

Example of taking world plane measurements on the rectified image. Left: original image, as captured by a camera, with mild lens distortion.

Right: rectified image with annotated length measurement.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/DetectCalibrationGrid_Chessboard.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/DetectCalibrationGrid_Circles.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/AnnotateGridPoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/DetectCalibrationGrid_Circles.html

Application Guide 3 Image StitchingApplication Guide 3 Image Stitching

Seamless image stitching in multiple camera setup is, in its essence, an image rectification onto the world plane.

Note that high quality stitching requires a vigilant approach to the calibration process. Each camera introduces both lens distortion as well as

perspective distortion, as it is never positioned perfectly perpendicular to the analyzed surface. Other factors that need to be taken into account

are the camera-object distance, camera rotation around the optical axis, and image overlap between cameras.

The process consists of two main steps. First, each camera is calibrated to produce a partial, rectified image. Then all partial images are simply

merged using the JoinImages filter.

Image stitching procedure can be outlined as follows:

Cover the inspection area with two or more cameras. Make sure that fields of view of individual cameras overlap a
bit.
Place a calibration grid onto the inspection area. For each camera, capture the image of a part of the calibration
grid. The grid defines a world coordinate system used for stitching, and so it should contain some markers from
which the coordinates of world plane points will be identifiable for each camera.
Define the world coordinate extents for which each camera will be responsible. For example, lets define that camera
1 should cover area from 100 to 200 in X, and from -100 to 100 in Y coordinate; camera 2 - from 200 to 300 in X, and
from -100 to 100 in Y.
For each camera, use a wizard associated with the inRectificationMapinRectificationMap input of RectifyImage filter to setup the
image rectification. Use the captured image for camera calibration and world to image transform. Use the defined
world coordinate extents to setup the rectification map generation (select "world bounding box" mode of operation).
Make sure that the world scale for rectification is set to the same fixed value for all images.
Use the JoinImages appropriately to merge outputs of RectifyImage filters.

Symmetric circle grid is the recommended one to use in Aurora Vision Studio. Unsupported asymmetric circle grid.

Detected chessboard grid, with image point array marked.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/JoinImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/JoinImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html

A multi-camera setup for inspection of a flat object.

Stitching result.

Golden TemplateGolden Template

Golden Template technique performs a pixel-to-pixel comparison of two images. This technique is especially useful when the object's surface or

object's shape is very complex.

Aurora Vision Studio offers three ways of performing the golden template comparison.

Comparison based on pixels intensityComparison based on pixels intensity - it can be achieved using the CompareGoldenTemplate_Intensity. In this method two images are compared

pixel-by-pixel and the defect is classified based on a difference between pixels intensity. This technique is especially useful in finding

defects like smudges, scratches etc.

Example usage of Golden Template technique using the pixels intensity based comparison.

Input images, as captured by cameras.

Golden templateGolden template Defected objectDefected object Found defectsFound defects

https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CompareGoldenTemplate_Intensity.html

Comparison based on objects edgesComparison based on objects edges - this method is very useful when defects may occur on the edge of the object and pixel comparison may fail

due to different light reflections or the checking the object surface is not necessary. For matching object's edges use the

CompareGoldenTemplate_Edges filter.

Example usage of Golden Template technique using the edges comparison.

Second version of the comparison based on objects edgesSecond version of the comparison based on objects edges - this method uses more than one image to create the model for the inspection. Due

to that it is not vulnerable to pixel-sized errors and displacements. Advanced tips on how to use its parameters are located here:

CompareGoldenTemplate2.

How To UseHow To Use

Golden template is a previously prepared image which is used to compare image from the camera. This robust technique allows us to perform quick

comparison inspection but some conditions must be met:

stable light conditions,
position of the camera and the object must be still,
precise object positioning

Most applications use the Template Matching technique for finding objects and then matched rectangle is compared. Golden template image and image to

compare must have this same dimensions. To get best results filter CropImageToRectangle should be used. Please notice that filter CropImageToRectangle

performs cropping using a real values and it has sub-pixel precision.

Deep LearningDeep Learning

Note:Note: The following article concerns the functionalities related to another product: Deep Learning Add-onDeep Learning Add-on. More
information are available here.

Table of contents:

1. Introduction
Overview of Deep Learning Tools
Basic Terminology
Stopping Conditions
Preprocessing
Augmentation

2. Anomaly Detection
3. Feature Detection
4. Object Classification
5. Instance Segmentation (deprecated)
6. Point Location
7. Object Location
8. Reading Characters
9. Locating Text

10. Troubleshooting

1. Introduction1. Introduction

Deep Learning is a breakthrough machine learning technique in computer vision. It learns from training images provided by the user and can

automatically generate solutions for a wide range of image analysis applications. Its key advantage, however, is that it is able to solve many of the

applications which have been too difficult for traditional, rule-based algorithms of the past. Most notably, these include inspections of objects with

high variability of shape or appearance, such organic products, highly textured surfaces or natural outdoor scenes. What is more, when using ready-

made products, such as our Aurora Vision Deep Learning, the required programming effort is reduced almost to zero. On the other hand, deep learning is

shifting the focus to working with data, taking care of high quality image annotations and experimenting with training parameters 3 these elements

actually tend to take most of the application development time these days.

Typical applications are:

detection of surface and shape defects (e.g. cracks, deformations, discoloration),
detecting unusual or unexpected samples (e.g. missing, broken or low-quality parts),
identification of objects or images with respect to predefined classes (i.e. sorting machines),
location, segmentation and classification of multiple objects within an image (i.e. bin picking),
product quality analysis (including fruits, plants, wood and other organic products),
location and classification of key points, characteristic regions and small objects,
optical character recognition.

The use of deep learning functionality includes two stages:

1. Training 3 generating a model based on features learned from training samples,
2. Inference 3 applying the model on new images in order to perform the actual machine vision task.

The difference to the traditional image analysis approach is presented in the diagrams below:

Golden templateGolden template Defected objectDefected object Found defectsFound defects

https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CompareGoldenTemplate_Edges.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CompareGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/deep_learning/

Traditional approach: The algorithm must be designed by a human specialist.

Machine learning approach: We only need to provide a training set of labeled images.

Overview of Deep Learning ToolsOverview of Deep Learning Tools

1. Anomaly Detection 3 this technique is used to detect anomalous (unusual or unexpected) samples. It only needs a set
of fault-free samples to learn the model of normal appearance. Optionally, several faulty samples can be added to
better define the threshold of tolerable variations. This tool is useful especially in cases where it is difficult
to specify all possible types of defects or where negative samples are simply not available. The output of this tool
are: a classification result (normal or faulty), an abnormality score and a (rough) heatmap of anomalies in the
image.

An example of a missing object detection using AvsFilter_DL_DetectAnomalies2 tool.

Left: The original image with a missing element. Right: The classification result with a heatmap of anomalies.

2. Feature Detection 3 this technique is used to precisely segment one or more classes of pixel-wise features within an
image. The pixels belonging to each class must be marked by the user in the training step. The result of this
technique is an array of probability maps for every class.

An example of image segmentation using AvsFilter_DL_DetectFeatures tool.

Left: The original image of the fundus. Right: The segmentation of blood vessels.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html

3. Object Classification 3 this technique is used to identify an object in a selected region with one of user-defined
classes. First, it is necessary to provide a training set of labeled images. The result of this technique is: the
name of detected class and a classification confidence level.

An example of object classification using AvsFilter_DL_ClassifyObject tool.

4. Instance Segmentation (deprecated) 3 this technique is used to locate, segment and classify one or multiple objects
within an image. The training requires the user to draw regions corresponding to objects in an image and assign them
to classes. The result is a list of detected objects 3 with their bounding boxes, masks (segmented regions), class
IDs, names and membership probabilities.

Warning:Warning: The Instance SegmentationInstance Segmentation model is trainable in 5.3 and older versions only. In more recent releases,
the models can be only inferred.

An example of instance segmentation using AvsFilter_DL_SegmentInstances_Deprecated tool. Left: The original image. Right: The resulting list of

detected objects.

5. Point Location 3 this technique is used to precisely locate and classify key points, characteristic parts and small
objects within an image. The training requires the user to mark points of appropriate classes on the training
images. The result is a list of predicted point locations with corresponding class predictions and confidence
scores.

An example of point location using AvsFilter_DL_LocatePoints tool. Left: The original image. Right: The resulting list of detected points.

6. Object Location 3 this technique is used to locate and classify one or multiple objects within an image. In this
tool, a user needs to draw rectangles bounding the objects in the scene and specify their classes. The result of
this technique is a list of rectangles bounding the predicted objects with corresponding class predictions and
confidence scores.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html

An example of instance segmentation using AvsFilter_DL_LocateObjects tool. Left: The original image. Right: The resulting list of detected

objects.

7. Reading Characters 3 this technique is used to locate and recognize characters within an image. The result is a list
of found characters.

An example of optical character recognition using AvsFilter_DL_ReadCharacters tool. Left: The original image. Right: The image with the

recognized characters drawn.

8. Locating Text 3 this technique is used to locate text within an image. The result is an array of found located
rectangles.

An example of locating text using AvsFilter_DL_LocateText tool. Left: The original image. Right: The image with the found text regions.

Basic TerminologyBasic Terminology

You do not need to have the specialistic scientific knowledge to develop your deep learning solutions. However, it is highly recommended to understand

the basic terminology and principles behind the process.

Deep neural networksDeep neural networks

Aurora Vision provides access to several standardized deep neural networks architectures created, adjusted and tested to solve industrial machine

vision tasks. Each of the networks is a set of trainable convolutional filters and neural connections which can model complex transformations of an

image with the goal to extract relevant features and use them to solve a particular problem. However, these networks are useless without proper amount

of good quality data provided for training process. This documentation presents necessary practical hints on creating an effective deep learning

model.

Depth of a neural networkDepth of a neural network

Due to various levels of task complexity and different expected execution times, the users can choose one of five available network depths. The

Network DepthNetwork Depth parameter is an abstract value defining the memory capacity of a neural network (i.e. the number of layers and filters) and the

ability to solve more complex problems. The list below gives hints about selecting the proper depth for a task characteristics and conditions.

1. Low depth (value 1-2)

A problem is simple to define.
A problem could be easily solved by a human inspector.
A short time of execution is required.
Background and lighting do not change across images.
Well-positioned objects and good quality of images.

2. Standard depth (default, value 3)

Suitable for a majority of applications without any special conditions.
A modern CUDA-enabled GPU is available.

3. High depth (value 4-5)

A big amount of training data is available.A big amount of training data is available.
A problem is hard or very complex to define and solve.
Complicated irregular patterns across images.
Long training and execution times are not a problem.
A large amount of GPU RAM (g4GB) is available.
Varying background, lighting and/or positioning of objects.

Tip: Test your solution with a lower depth first, and then increase it if needed.

Note: A higher network depth will lead to a significant increase in memory and computational complexity of training and execution.

Data divisionData division

While training the model, we use one set of images to estimate the network weights. This set is called trainingtraining data and should reflect the problem

as well as possible (e.g., in the case of object classification, representants for all considered classes should be present in this set).

To be sure that the learned model generalizes well, or in other words can give similar results with newly seen data, we need to prepare validationvalidation

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html

data, too. This second set should contain a small number of representative images to the learned problem. A rule of a thumb says, that its size should

be 10% of the training data set size and have a good representation of all problems (e.g., at least one image for each class in the case of object

classification should be present in validation data).

The images loaded to Deep Learning Editor must be assigned to one of those two datasets before training procedure can follow.

When the amount of data is large, one may want to simulate how the trained model will work on images not used during the training (it allows checking

the performance accessible during the inference). In such a case, assign images to testtest data.

Training processTraining process

Model training is an iterative process of updating neural network weights based on the training data. One iterationiteration involves some number of steps

(determined automatically), each step consists of the following operations:

1. selection of a small subset (batchbatch) of training samples,
2. calculation of an error measure for these samples,
3. updating the weights to achieve lower error for these samples.

At the end of each iteration, the current model is evaluated on a separate set of validation samples selected before the training process. Depending

on the tool, validation set can be automatically chosen from the training samples, or selected by the user. It is used to simulate how neural network

would work with real images not used during training. Only the set of network weights corresponding with the best validation score at the end of

training is saved as the final solution. Monitoring the training, validation and loss score (blue, orange and purple lines in the figures below) in

consecutive iterations gives fundamental information about the progress:

1. Training and validation scores are improving and loss score is decreasing 3 keep training, the model can still
improve.

2. Training and validation scores has stopped improving and loss score is decreasing 3 keep training for a few
iterations more and stop if there is still no change.

3. Loss score is improving 3 you can stop training, model has probably started overfittingoverfitting to your training data
(remembering exact samples rather than learning rules about features). It may also be caused by too small amount of
diverse samples or too low complexity of the problem for a network selected (try lower Network DepthNetwork Depth).

The above graphs represent training progress in the Deep Learning Editor. The blue line indicates performance on the training samples, the orange line

represents performance on the validation samples and the purple line represents the loss function. Please note the blue line is plotted more

frequently than the orange line as validation performance is verified only at the end of each iteration.

Stopping ConditionsStopping Conditions

The user can stop the training manually by clicking the StopStop button. Alternatively, it is also possible to set one or more stopping conditions:

1. Iteration CountIteration Count 3 training will stop after a fixed number of iterations.
2. Iterations without ImprovementIterations without Improvement 3 training will stop when the best validation score was not improved for a given

number of iterations.
3. TimeTime 3 training will stop after a given number of minutes has passed.
4. Validation AccuracyValidation Accuracy or Validation ErrorValidation Error 3 training will stop when the validation score reaches a given value.

PreprocessingPreprocessing

To adjust performance to a particular task, the user can apply some additional transformations to the input images before training starts:

1. DownsampleDownsample 3 reduction of the image size to accelerate training and execution times, at the expense of lower level
of details possible to detect. Increasing this parameter by 1 will result in downsampling by the factor of 2 over
both image dimension.

2. Convert to GrayscaleConvert to Grayscale 3 while working with problems where color does not matter, you can choose to work with
monochrome versions of images.

AugmentationAugmentation

In case when the number of training images can be too small to represent all possible variations of samples, it is recommended to use data

augmentations that add artificially modified samples during training. This option will also help avoiding overfitting.

Below is a description of the available augmentations and examples of the corresponding transformations:

1. LuminanceLuminance 3 change brightness of samples by a random percentage (between -ParameterValue and +ParameterValue) of
pixel values (0-255). For a given augmentation values, samples as below can be added to the training set.

2. ContrastContrast 3 difference in brightness or color between elements of an image. This parameter enhances the network to
recognize details more effectively. It is specified by a single float value that defines the range of contrast
adjustments as (-contrast, contrast). These values can range from -50% to 50%, where 0% indicates no change, 50%
represents the maximum increase in contrast, and -50% signifies the maximum decrease in contrast. The default
setting is 0%. For instance, if a 20% value is chosen, the contrast change applied to an image will be randomly
selected from a range of -20% to 20% and incorporated into the training set.

An example of correct training. A graph characteristic for network overfitting.

Luminance=-50. Luminance=-25. Original image. Luminance=25. Luminance=50.

3. BrightnessBrightness 3 increase the brightness of samples by multiplying pixel values. This parameter is introduced instead
of LuminanceLuminance in some of Deep Learning tools.

4. NoiseNoise 3 modify samples with uniform noise. Value of each channel and pixel is modified separately, by random
percentage (between -ParameterValue and +ParameterValue) of pixel values (0-255). Please note that choosing an
appropriate augmentation value should depend on the size of the feature in pixels. Larger value will have a much
greater impact on small objects than on large objects. For a tile with the feature "F" with the size of 130x130
pixels and a given augmentation values, samples as below can be added to the training set.:

5. Gaussian BlurGaussian Blur 3 blur samples with a kernel of a size randomly selected between 0 and the provided maximum kernel
size. Please note that choosing an appropriate Gaussian Blur Kernel Size should depend on the size of the feature in
pixels. Larger kernel sizes will have a much greater impact on small objects than on large objects. For a tile with
the feature "F" with the size of 130x130 pixels and a given augmentation values, samples as below can be added to
the training set.:

6. RotationRotation 3 rotate samples by a random angle between -ParameterValue and +ParameterValue. Measured in degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can be

added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added to the

training set.

7. Flip Up-DownFlip Up-Down 3 reflect samples along the X axis.
8. Flip Left-RightFlip Left-Right 3 reflect samples along the Y axis.

Contrast=-50%. Contrast=-20%. Original image (0%). Contrast=20%. Contrast=50%.

Brightness=0.2. Brightness=0.5. Original image. Brightness=1.5. Brightness=1.8.

Original grayscale image. Grayscale image. Noise=4. Grayscale image. Noise=10. Grayscale image. Noise=25. Grayscale image. Noise=50.

Original RGB image. RGB image. Noise=4. RGB image. Noise=10. RGB image. Noise=25. RGB image. Noise=50.

Original image. Gaussian Blur=5. Gaussian Blur=10. Gaussian Blur=25. Gaussian Blur=50.

Tile rotation=-45°. Tile rotation=-20°. Original tile. Tile rotation=20°. Tile rotation=45°.

Image rotation=-45°. Image rotation=-20°. Original image. Image rotation=20°. Image rotation=45°.

9. Relative TranslationRelative Translation 3 translate samples by a random shift, defined as a percentage (between -ParameterValue and
+ParameterValue) of the tile. Works independently in both X and Y dimensions.

In Locate Points, for a tile with the feature "F" and given augmentation values, samples as below can be added to the training set.

10. ScaleScale 3 resize samples relatively to their original size by a random percentage between the provided minimum scale
and maximum scale.

11. Horizontal ShearHorizontal Shear 3 shear samples horizontally by an angle between -ParameterValue and +ParameterValue. Measured in
degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can be

added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added to the

training set.

12. Vertical ShearVertical Shear 3 analogous to Horizontal Shear.

In Detect Features, Locate Points, and Detect Anomalies, for a tile with the feature "F" and given augmentation values, samples as below can be

added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation values, samples as below can be added to the

training set.

Warning: the choice of augmentation options depends only on the task we want to solve. Sometimes they might be harmful for quality of a solution. For

a simple example, the Rotation should not be enabled if rotations are not expected in a production environment. Enabling augmentations also increases

the network training time (but does not affect execution time!)

No flips. Up-Down flip. Left-Right flip. Both flips.

Tile translation x=20%, y=20%. Original tile. Tile translation x=-20%, y=-20%.

Resize=50%. Original image. Resize=150%.

Horizontal Shear=-30. Original tile. Horizontal Shear=30.

Horizontal Shear=-30. Original image. Horizontal Shear=30.

Vertical Shear=-30. Original tile. Vertical Shear=30.

Vertical Shear=-30. Original image. Vertical Shear=30.

2. Anomaly Detection2. Anomaly Detection

Warning:Warning: The AvsFilter_DL_DetectAnomalies1AvsFilter_DL_DetectAnomalies1 model is trainable in 5.3 and older versions only. In more recent
releases, the models can only be used for inference.

Aurora Vision Deep Learning provides two ways of defect detection:

AvsFilter_DL_DetectAnomalies2 Golden Template
AvsFilter_DL_DetectAnomalies2 Similarity-Based

The AvsFilter_DL_DetectAnomalies2 Golden TemplateGolden Template is an appropriate method for positioned objects with complex details. The tool divides the images

into regions and creates a separate model for each region. The tool has the Texture ModeTexture Mode dedicated for texture defects detection. It can be used for

plain surfaces or the ones with a simple pattern.

The AvsFilter_DL_DetectAnomalies2 Similarity-BasedSimilarity-Based is a good general-purpose technique that can handle detailed as well as simple datasets. The tool

operates by first assembling a collection of normal features during training and then by comparing observed image segments against this collection

during inference to assess normality.

To sum up, while choosing the tool for anomaly detection, first check the Similarity-BasedSimilarity-Based approach. If the model isn't producing sufficiently

accurate defect localizations, please try the Golden TemplateGolden Template approach.

An example of textile defect detection using the AvsFilter_DL_DetectAnomalies2.

ParametersParameters

Max Translation Max Translation is related to the AvsFilter_DL_DetectAnomalies2 Golden TemplateGolden Template approach. It is the maximal
position change tolerance. If the parameter increases, the working area of a small model enlarges and the number of
the created small models decreases.
Model Complexity Model Complexity (or just Complexity) is related to the AvsFilter_DL_DetectAnomalies2 approach. Greater value may
improve model effectiveness, especially for complex objects, at the expense of memory usage and interference time.

MetricsMetrics

Measuring accuracy of anomaly detection tools is a challenging task. The most straightforward approach is to calculate the Recall/Precision/F1

measures for the whole images (classified as GOOD or BAD, without looking at the locations of the anomalies). Unfortunately, such an approach is not

very reliable due to several reasons, including: (1) when we have a limited number of test images (like 20), the scores will vary a lot (like �=5%)

when just one case changes; (2) very frequently the tools we test will find random false anomalies, but will not find the right ones - and still will

get high scores as the image as a whole is considered correctly classified. Thus, it may be tempting to use annotated anomaly regions and calculate

the per-pixel scores. However, this would be too fine-grained. For anomaly detection tasks we do not expect the tools to be necessarily very accurate

in terms of the location of defects. Individual pixels do not matter much. Instead, we expect that the anomalies are detected "more or less" at the

right locations. As a matter of fact, some tools which are not very accurate in general (especially those based on auto-encoders) will produce

relatively accurate outlines for the anomalies they find, while the methods based on one-class classification will usually perform better in general,

but the outlines they produce will be blurred, too thin or too thick.

For these reasons, we introduced an intermediate approach to calculation of Recall. Instead of using the per-image or the per-pixel methods, we use a

per-region one. Here is how we calculate Recall:

For each anomaly region we check if there is any single pixel in the heatmap above the threshold. If it is, we
increase TPTP (the number of True Positives) by one. Otherwise, we increase FNFN (the number of False Negatives) by
one.
Then we use the formula:

The above method works for Recall, but cannot be directly applied to the calculation of Precision. Thus, for Precision we use a per-pixel approach,

but it also comes with its own difficulties. First issue is that we often find ourselves having a lot of GOOD samples and a very limited set of BAD

testing cases. This means unbalanced testing data, which in turn means that the Precision metric is highly affected with the overwhelming quantity of

GOOD samples. The more GOOD samples we have (at the same amount of BAD samples), the lower Precision will be. It may be actually very low, often not

reflecting the true performance of the tool. For that reason, we need to incorporate balancing into our metrics.

A second issue with Precision in real-world projects is that False Positives tend to naturally occur within BAD images, outside of the marked anomaly

regions. This happens for several reasons, but is repeatable among different projects. Sometimes if there is a defect, it often means that something

was broken and other parts of the object may be slightly affected too, sometimes in a visible way, sometimes with a level of ambiguity. And quite

often the objects under inspection simply get affected by the process of artificially introducing defects (like someone is touching a piece of fabric

and accidentally causes wrinkles that would normally not occur). For this reason, we calculate the per-pixel False Negatives only on GOOD images.

The complete procedure for calculation of Precision is:

We calculate the average pp_TPpp_TP (the number of per-pixel True Positives) across all BAD testing samples.
We calculate the average pp_FPpp_FP (the number of per-pixel False Positives) across all GOOD testing samples.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies1.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html

Then we use the formula:

Finally we calculate the F1 score in the standard way, for practical reasons neglecting the fact that the Recall and Precision values that we unify

were calculated in different ways. We believe that this metric is best for practical applications.

Model UsageModel Usage

In Detect Anomalies 2 variant, a model should be loaded with AvsFilter_DL_DetectAnomalies2_Deploy prior to executing it with

AvsFilter_DL_DetectAnomalies2. Alternatively, model can be loaded directly by AvsFilter_DL_DetectAnomalies2 filter, but it will then require time-

consuming initialization in the first program iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

3. Feature Detection (segmentation)3. Feature Detection (segmentation)

This technique is used to detect pixel-wise regions corresponding to defects or 3 in a general sense 3 to any image features. A feature here may be

also something like the roads on a satellite image or an object part with a characteristic surface pattern. Sometimes it is also called pixel labeling

as it assigns a class label to each pixel, but it does not separate instances of objects.

Training DataTraining Data

Images used for training can be of different sizes and can have different ROIs defined. However, it is important to ensure that the scale and the

characteristics of the features are consistent with that of the production environment.

Each and every feature should be marked on all training images, or the ROI should be limited to include only marked defects. Incompletely or

inconsistently marked features are one of the main reasons of poor accuracy. REMEMBER: If you leave even a single piece of some feature not marked, it

will be used as a negative sample and this will highly confuse the training process!

The marking precision should be adjusted to the application requirements. The more precise marking the better accuracy in the production environment.

While marking with low precision it is better to mark features with some excess margin.

Multiple classes of featuresMultiple classes of features

It is possible to detect many classes of features separately using one model. For example, road and building like in the image below. Different

features may overlap but it is usually not recommended. Also, it is not recommended to define more than a few different classes in a single model. On

the other hand, if there are two features that may be mutually confusing (e.g. roads and rivers), it is recommended to have separate classes for them

and mark them, even if one of the classes is not really needed in the results. Having the confusing feature clearly marked (and not just left as the

background), the neural network will focus better on avoiding misclassification.

An example of marking two different classes (red roads and yellow buildings) in the one image.

An example of wood knots marked with low precision. An example of tile cracks marked with high precision.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html

Patch (Feature) SizePatch (Feature) Size

Detect Features is an end-to-end segmentation tool which works best when analysing an image in a medium-sized square window. The size of this window

is defined by the Feature Size parameter. It should be not too small, and not too big. Typically much bigger than the size (width or diameter) of the

feature itself, but much less than the entire image. In a typical scenario the value of 96 or 128 works quite well.

Performance Tip 1: a larger Feature Size increases the training time and requires more GPU memory and more training samples to operate effectively.

When Feature Size exceeds 128 pixels and still looks too small, it is worth considering the DownsampleDownsample option.

Performance Tip 2: if the execution time is not satisfying you can set the inOverlap filter input to False. It should speed up the inspection by 10-

30% at the expense of less precise results.

Examples of Feature Size: too large or too small (red), maybe acceptable (yellow) and good (green). Remember that this is just an example and may vary

in other cases.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_DetectFeatures_Deploy filter before using AvsFilter_DL_DetectFeatures filter to perform segmentation of

features. Alternatively, the model can be loaded directly by AvsFilter_DL_DetectFeatures filter, but it will result in a much longer time of the first

iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.
To shorten feature segmentation process you can disable inOverlapinOverlap option. However, in most cases, it decreases
segmentation quality.
Feature segmentation results are passed in a form of bitmaps to outHeatmapsoutHeatmaps output as an array and outFeature1outFeature1,
outFeature2outFeature2, outFeature3outFeature3 and outFeature4outFeature4 as separate images.

Due to the lack of context on the image border, correctly detecting objects at the image edges is problematic. Therefore, the heatmaps returned by the

network focus on the image content beyond the edges without analysing the data located on the image border. When the inRoiinRoi is applied, the border is

removed from the selected image region.

4. Object Classification4. Object Classification

This technique is used to identify the class of an object within an image or within a specified region.

The Principle of OperationThe Principle of Operation

During the training phase, the object classification tool learns representation of user defined classes. The model uses generalized knowledge gained

from samples provided for training, and aims to obtain good separation between the classes.

Result of classification after training.

After a training process is completed, the user is presented with a confusion matrix. It indicates how well the model separated the user defined

classes. It simplifies identification of model accuracy, especially when a large number of samples has been used.

Confusion matrix presents correct (diagonal) and incorrect assignment of samples to the user defined classes.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html

Training ParametersTraining Parameters

In addition to the default training parameters (list of parameters available for all Deep Learning algorithms), the AvsFilter_DL_ClassifyObject tool

provides a Detail LevelDetail Level parameter which enables control over the level of detail needed for a particular classification task. For majority of cases

the default value of 1 is appropriate, but if images of different classes are distinguishable only by small features (e.g. granular materials like

flour and salt), increasing value of this parameter may improve classification results.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_ClassifyObject_Deploy filter before using AvsFilter_DL_ClassifyObject filter to perform classification.

Alternatively, model can be loaded directly by AvsFilter_DL_ClassifyObject filter, but it will result in a much longer time of the first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.
Classification results are passed to outClassNameoutClassName and outClassIndexoutClassIndex outputs.
The score value outScoreoutScore indicates the confidence of classification.

5. Instance Segmentation (deprecated)5. Instance Segmentation (deprecated)

Warning:Warning: The Instance SegmentationInstance Segmentation model is trainable in 5.3 and older versions only. In more recent releases, the
models can be only inferred.

This technique is used to locate, segment and classify one or multiple objects within an image. The result of this technique are lists with elements

describing detected objects 3 their bounding boxes, masks (segmented regions), class IDs, names and membership probabilities.

Note that in contrary to feature detection technique, instance segmentation detects individual objects and may be able to separate them even if they

touch or overlap. On the other hand, instance segmentation is not an appropriate tool for detecting features like scratches or edges which may

possibly have no object-like boundaries.

Training DataTraining Data

The training phase requires the user to draw regions corresponding to objects on an image and assign them to classes.

Original image. Visualized instance segmentation results.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html

Editor for marking objects.

Training ParametersTraining Parameters

Instance segmentation training adapts to the data provided by the user and does not require any additional training parameters besides the default

ones.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_SegmentInstances_Deploy_Deprecated filter before using AvsFilter_DL_SegmentInstances_Deprecated filter to

perform classification. Alternatively, model can be loaded directly by AvsFilter_DL_SegmentInstances_Deprecated filter, but it will result in a much

longer time of the first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.
To set minimum detection score inMinDetectionScoreinMinDetectionScore parameter can be used.
Maximum number of detected objects on a single image can be set with inMaxObjectsCountinMaxObjectsCount parameter. By default it is
equal to the maximum number of objects in the training data.
Results describing detected objects are passed to following outputs:

bounding boxes: outBoundingBoxesoutBoundingBoxes,
class IDs: outClassIdsoutClassIds,
class names: outClassNamesoutClassNames,
classification scores: outScoresoutScores,
masks: outMasksoutMasks.

6. Point Location6. Point Location

This technique is used to precisely locate and classify key points, characteristic parts and small objects within an image. The result of this

technique is a list of predicted point locations with corresponding class predictions and confidence scores.

When to use point location instead of instance segmentation:

precise location of key points and distinctive regions with no strict boundaries,
location and classification of objects (possibly very small) when their segmentation masks and bounding boxes are
not needed (e.g. in object counting).

When to use point location instead of feature detection:

coordinates of key points, centroids of characteristic regions, objects etc. are needed.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deploy_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html

Training DataTraining Data

The training phase requires the user to mark points of appropriate classes on the training images.

Editor for marking points.

Feature SizeFeature Size

In the case of the Point Location tool, the Feature Size parameter corresponds to the size of an object or characteristic part. If images contain

objects of different scales, it is recommended to use a Feature Size slightly larger than the average object size, although it may require

experimenting with different values to achieve the best possible results.

Performance tip: a larger feature size increases the training time and needs more memory and training samples to operate effectively. When feature

size exceeds 64 pixels and still looks too small, it is worth considering the DownsampleDownsample option.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_LocatePoints_Deploy filter before using AvsFilter_DL_LocatePoints filter to perform point location and

classification. Alternatively, model can be loaded directly by AvsFilter_DL_LocatePoints filter, but it will result in a much longer time of the first

iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.
To set minimum detection score inMinDetectionScoreinMinDetectionScore parameter can be used.

Original image. Visualized point location results.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html

inMinDistanceRatioinMinDistanceRatio parameter can be used to set minimum distance between two points to be considered as different.
The distance is computed as MinDistanceRatio * FeatureSize. If the value is not enabled, the minimum distance is
based on the training data.
To increase detection speed but with potentially slightly worse precision inOverlapinOverlap can be set to False.
Results describing detected points are passed to following outputs:

point coordinates: outLocationsoutLocations,
class IDs: outClassIdsoutClassIds,
class names: outClassNamesoutClassNames,
classification scores: outScoresoutScores.

7. Locating objects7. Locating objects

This technique is used to locate and classify one or multiple objects within an image. The result of this technique is a list of rectangles bounding

the predicted objects with corresponding class predictions and confidence scores.

The tool returns the rectangle region containing the predicted objects and showing their approximate location and orientation, but it doesn't return

the precise position of the key points of the object or the segmented region. It is an intermediate solution between the Point Location and the

Instance Segmentation.

Training DataTraining Data

The training phase requires the user to mark rectangles bounding objects of appropriate classes on the training images.

Editor for marking objects.

Original image.

Visualized object location results.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_LocateObjects_Deploy filter before using AvsFilter_DL_LocateObjects filter to perform object location and

classification. Alternatively, model can be loaded directly by AvsFilter_DL_LocateObjects filter, but it will result in a much longer time of the

first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.
To set minimum detection score inMinDetectionScoreinMinDetectionScore parameter can be used.
Results describing detected objects are passed to the object output: outObjectsoutObjects.

8. Reading Characters8. Reading Characters

This technique is used to locate and recognize characters within an image. The result is a list of found characters.

This tool uses a pretrained model and cannot be trained.

Model UsageModel Usage

A model should be loaded with the AvsFilter_DL_ReadCharacters_Deploy filter before using the AvsFilter_DL_ReadCharacters filter to perform

recognition. Alternatively, a model can be loaded directly by the AvsFilter_DL_ReadCharacters filter, but it may result in a longer time of the first

iteration.

Running the Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of the image analysis and/or to set a text orientation you can use the inRoiinRoi input.
You can set one of the available pretrained model types in the AvsFilter_DL_ReadCharacters_Deploy filter using the
inPretrainedModelType input or, in the AvsFilter_DL_ReadCharacters filter, using the inModelID/PretrainedModel
input. Differences between the various model types are elaborated upon here.
The average size (in pixels) of characters in the analysed area should be set with the inCharHeightinCharHeight parameter. Here
you can learn more about the relation between the inCharRange input value and the type of model that you selected.
To improve the detection/recognition accuracy for a font with exceptionally thin or wide contours you can use
theinWidthScaleinWidthScale input. To some extent, it may also help in case of characters positioned very close to each other.
To filter false positive results near true characters use inCharSpacinginCharSpacing parameter.
To limit or increase the set of recognized characters (e.g. to exclude digits or to include punctuation marks) use
the inCharRangeinCharRange parameter.
To filter results by polarity and contrast use inPolarizationinPolarization and inContrastThresholdinContrastThreshold parameters.
To remove results at the edge of ROI inRemoveBoundaryCharactersinRemoveBoundaryCharacters parameter.

To postprocess results of AvsFilter_DL_ReadCharacters you can use MergeCharactersIntoLines filter.

To get string by connection outCharactersoutCharacters
To match known inPatterninPattern use grammar rules

9. Locating Text9. Locating Text

This technique is used to locate text within an image. The result is an array of found located rectangles.

This tool uses a pretrained model and cannot be trained.

Original image. Visualized results of the OCR tool.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/OcrPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/OcrPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/MergeCharactersIntoLines.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/MergeCharactersIntoLines.html

Model UsageModel Usage

A model should be loaded with the AvsFilter_DL_LocateText_Deploy filter before using the AvsFilter_DL_LocateText filter to perform recognition.

Alternatively, model can be loaded directly by the AvsFilter_DL_LocateText filter, but it may result in a longer time of the first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use the inRoiinRoi input.
You can set one of the available pretrained model types in the AvsFilter_DL_LocateText filter using the
inModelID/PretrainedModel input. Differences between the various model types are elaborated upon here.
The average size (in pixels) of characters in the analysed area should be set with the inCharHeightinCharHeight parameter. Here
you can learn more about the relation between the inCharRange input value and the type of model that you selected.
To improve the detection accuracy for a font with exceptionally thin or wide contours you can use the inWidthScaleinWidthScale
input. To some extent, it may also help in case of characters positioned very close to each other.
To set the minimum area value threshold for detection, inMinTextAreainMinTextArea parameter can be used.

10. Troubleshooting10. Troubleshooting

Below you will find a list of most common problems.

1. Network overfitting1. Network overfitting

A situation when a network loses its ability to generalize over available problems and focuses only on training data.

Symptoms: during training, the loss graph starts rising, the validation graph stops at one level and training graph continues to rise. Defects on

training images are marked very precisely, but defects on new images are marked poorly.

A graph characteristic for network overfitting.

Causes:

The number of test samples is too small.
Training time is too long.

Possible solutions:

Provide more real samples of different objects.
Use more augmentations.
Reduce Network Depth.

2. Susceptibility to changes in lighting conditions2. Susceptibility to changes in lighting conditions

Symptoms: network is not able to process images properly when even minor changes in lighting occur.

Causes:

Samples with variable lighting were not provided.

Solution:

Provide more samples with variable lighting.
Enable "Luminance" option for automatic lighting augmentation.

3. No progress in network training3. No progress in network training

Symptoms 5 even though the training time is optimal, there is no visible training progress.

Original image.

Visualized text location results, with orientation marked at origin.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/LocateTextPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/LocateTextPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html

Training progress with contradictory samples.

Causes:

The number of samples is too small or the samples are not variable enough.
Image contrast is too small.
The chosen network architecture is too small.
There is contradiction in defect masks.

Solution:

Modify lighting to expose defects.
Remove contradictions in defect masks.

Tip: Remember to mark all defects of a given type on the input images or remove images with unmarked defects. Marking only a part of defects of a

given type may negatively influence the network learning process.

4. Training/sample evaluation is very slow4. Training/sample evaluation is very slow

Symptoms 5 training or sample evaluation takes a lot of time.

Causes:

Resolution of the provided input images is too high.
Fragments that cannot possibly contain defects are also analyzed.

Solution:

Enable "Downsample" option to reduce the image resolution.
Limit ROI for sample evaluation.
Use lower Network Depth

See AlsoSee Also

Deep Learning training API documentation - instruction how to perform training of Deep Learning models (5.3 and
older version only).

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/5.6/avl/technical_issues/DeepLearningTrainingAPI.html
https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Aurora Vision Library Documentation
	1. Introduction
	Overview
	Introduction
	Relation between Aurora Vision Library and Aurora Vision Studio
	Key Features
	Performance
	Modern Design
	Consistency
	Example Program
	Programming Conventions
	Organization of the Library
	Namespaces
	Enumeration Types
	Function Parameters
	Diagnostic Output Parameters
	Optional Outputs
	In-Place Data Processing
	Work Cancellation
	Library Initialization
	Debug Preview
	Aurora Template Library
	Array<T>
	Optional<T>
	Conditional<T>
	Dummy<T>
	2. Getting Started
	SDK Installation
	Requirements
	Running the Installer
	SDK Directories
	Library Architecture
	Environment and Paths
	Project Configuration
	General Information
	Creating a New Project
	Microsoft Visual Studio 2015, 2017 and 2019
	Required Project Settings
	Including Headers
	Distributing Aurora Vision Library with Your Application
	Using Library with CMake
	Quick Start
	Reference
	package
	install_avl
	copy_avl
	Using Library on Linux
	Requirements
	Common prerequisites
	Supported input devices
	Installation instructions
	Compilation instructions
	Directory structure
	Compilation
	Using CMake
	Using Makefile or your custom build system
	Known compilation bugs
	Licensing and distribution
	Licensing
	File License
	Dongle License
	Distribution
	Program development - general advise
	Runtime considerations
	Homogeneous Multiprocessor/SMP
	Heterogeneous Multiprocessor
	Tegra TX2
	Using User Filters on Linux
	Creating Studio project
	Building User Filter on Linux
	Loading User Filter library from Studio program
	Using AVL instead of AVL Lite
	3. Technical Issues
	Interfacing with Other Libraries
	Example: Converting Between avl::Image and OpenCV Mat
	Example: avl::Image from pointer to image data
	Displaying Images Directly on WinAPI/MFC Device Context (HDC)
	Loading Aurora Vision Studio Files (AVDATA)
	Working with GenICam GenTL Devices
	Introduction
	Basic Usage
	Advanced Usage
	Additional Requirements
	Processing Images in Worker Thread
	Introduction to the Problem
	Example Application and Image Buffer Synchronization
	Notifications about Image Ready to Display
	Issues of Multithreading
	Troubleshooting
	Problems with Building
	error LNK2019: unresolved external symbol _LoadImageA referenced in function error C2039: 'LoadImageA' : is not a member of 'avl'
	error LNK1123: failure during conversion to COFF: file invalid or corrupt
	Exceptions Thrown in Run Time
	Exception from the avl namespace is thrown
	High CPU Usage When Running AVL Based Image Processing
	Memory Leak Detection in Microsoft Visual Studio
	False Positives of Memory Leaks in AVL.dll
	Solution: Delayed Loading of AVL.dll
	Further Consequences
	ATL Data Types Visualizers
	Data Visualizers
	Example ATL data visualization
	Image Watch extension
	Optimizing Image Analysis for Speed
	General Rules
	Common Optimization Tips
	Library-specific Optimizations
	In-Place Data Processing
	Re-use of Image Memory
	Skipping Background Initialization
	Library Initialization
	Configuring Parallel Computing
	Configuring Image Memory Pools
	Using GPGPU/OpenCL Computing
	Deep Learning Training API
	Overview
	Namespaces
	Classes and Types
	avl::DetectFeaturesTraining
	Constructors
	Configuration Methods
	Enums
	Functions
	ParseConfigFromFile
	StartTraining
	SaveModel
	Method Signatures
	Parameters
	Helper Methods
	Usage Examples
	LoadModel
	Method Signatures
	Parameters
	Functionality
	Usage Examples
	Important Notes
	GetModelStateFilePath & GetModelWeaverFilePath
	Method Signatures
	Return Values
	Usage
	InferAndGrade
	Parameters
	Handling Events
	Usage Example
	JSON Configuration Example
	Best Practices
	Limitations and Notes
	4. Working with GigE Vision® Devices
	GigE Vision® Device Manager
	Device Manager Functions
	Refresh
	Tools
	Tool: Access Device Settings...
	Tool: Setup Device Network Interface...
	Tool: Assign Temporary IP for Unreachable Device
	Tool: Application Transport Settings...
	Tool: Open GenICam XML Directory
	Connecting Devices
	Firewall Issues
	Configuring IP Address of a Device
	Packet Size
	Connecting Multiple Devices to a Single Computer
	Enabling Traffic in Firewall
	Enabling Jumbo Packets
	Introduction
	Enabling Jumbo Packets in Windows Vista/7
	Device Settings Editor
	Saving Device Configuration
	Parameter Information
	Known Issues
	Table of Contents
	The Imaging Source cameras
	Basic Troubleshooting
	5. Machine Vision Guide
	Image Processing
	Introduction
	Regions of Interest
	Image Boundary Processing
	Toolset
	Image Combinators
	Image Smoothing
	Image Morphology
	Gradient Analysis
	Spatial Transforms
	Spatial Transform Maps
	Image Thresholding
	Image Pixel Analysis
	Image Features
	Blob Analysis
	Introduction
	Concept
	Examples
	Rubber Band
	Mounts
	Extraction
	Thresholding
	Classic Thresholding
	Dynamic Thresholding
	Color-based Thresholding
	Refinement
	Region Morphology
	Dilation and Erosion
	Closing and Opening
	Other Refinement Methods
	Analysis
	Region Features
	Numeric Features
	Non-numeric Features
	Case Studies
	Capsules
	FindRegion Routine
	Complete Solution
	1D Edge Detection
	Introduction
	Concept
	Example
	Filter Toolset
	Parameters
	Profile Extraction
	Edge Extraction
	Edge Transition
	Stripe Intensity
	Case Study: Blades
	1D Edge Detection – Subpixel Precision
	Introduction
	Example: Parabola Fitting
	Advanced: Methods Available in Aurora Vision
	Shape Fitting
	Introduction
	Concept
	Toolset
	Parameters
	Template Matching
	Introduction
	Concept
	Naive Template Matching
	Image Correlation
	Cross-Correlation
	Normalized Cross-Correlation
	Template Correlation Image
	Identification of Matches
	Summary
	Grayscale-based Matching, Edge-based Matching
	Image Pyramid
	Pyramid Processing
	Grayscale-based Matching
	Edge-based Matching
	Filter Toolset
	Available Filters
	Advanced Application Schema
	Schema 1: Model Creation in a Separate Program
	Schema 2: Dynamic Model Creation
	Model Creation
	Height of the Pyramid
	Angle Range
	Scale Range
	Edge Detection Settings (only Edge-based Matching)
	Matching
	Tips and Best Practices
	How to Select a Method?
	How to even further upgrade the results of Edge-based Matching?
	Using Local Coordinate Systems
	Introduction
	Creating a Local Coordinate System
	Using a Local Coordinate System
	Example 1: Alignment from Template Matching
	Example 2: Alignment from Blob Analysis
	Manual Alignment
	Not Mixing Local Coordinate Systems
	Optical Character Recognition - traditional method
	Introduction
	Concept
	Using high level Optical Character Recognition filters
	Details on Optical Character Recognition technique
	Reading text from images
	Getting text location
	Extracting text from the background
	Segmenting text
	Using prepared OCR models
	Character recognition
	Interpreting results
	Verifying results
	Preparation of the OCR models
	Preparation of the training data set
	Selection of normalization size and character features
	Training of the OCR model
	Saving the training results
	Camera Calibration and World Coordinates
	Camera Calibration
	World Plane - Measurements and Rectification
	Extraction of Calibration Grids
	Application Guide – Image Stitching
	Golden Template
	How To Use
	Deep Learning
	1. Introduction
	Overview of Deep Learning Tools
	Basic Terminology
	Deep neural networks
	Depth of a neural network
	Data division
	Training process
	Stopping Conditions
	Preprocessing
	Augmentation
	2. Anomaly Detection
	Parameters
	Metrics
	Model Usage
	3. Feature Detection (segmentation)
	Training Data
	Multiple classes of features
	Patch (Feature) Size
	Model Usage
	4. Object Classification
	The Principle of Operation
	Training Parameters
	Model Usage
	5. Instance Segmentation (deprecated)
	Training Data
	Training Parameters
	Model Usage
	6. Point Location
	Training Data
	Feature Size
	Model Usage
	7. Locating objects
	Training Data
	Model Usage
	8. Reading Characters
	Model Usage
	9. Locating Text
	Model Usage
	10. Troubleshooting
	1. Network overfitting
	2. Susceptibility to changes in lighting conditions
	3. No progress in network training
	4. Training/sample evaluation is very slow
	See Also

